
End-user Programming of Ambient Narratives
for Smart Retail Environments

ISBN 978-90-386-1527-1

“Men’s Native Title Painting, 1998”
Reproduced from the cover of Pila Nguru - the Spinifex People
by Scott Cane (Fremantle Arts Centre Press, 2002).
Reproduced by arrangement with the publisher.

Cover design by Paul Verspaget & Carin Bruinink

The work described in this thesis has been carried out at the Philips Research
Laboratories Eindhoven, The Netherlands, as part of the Philips Research
Programme.

c©Koninklijke Philips Electronics N.V. 2009
All rights are reserved. Reproduction in whole or in part is

prohibited without the written consent of the copyright owner.

End-user Programming of Ambient
Narratives for Smart Retail

Environments

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof.dr.ir. C.J. van Duijn,

voor een commissie aangewezen door het College
voor Promoties in het openbaar te verdedigen op

dinsdag 17 maart 2009 om 16.00

door

Markus Gerardus Leonardus Maria van Doorn

geboren te Veghel

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. E.H.L. Aarts
en
prof.dr.ir. A.P. de Vries

Contents

Preface and Acknowledgements vii

1 Introduction 1
1.1 End-user Programming . 3
1.2 Smart Retail Environments 3
1.3 Focus of the thesis . 5
1.4 Contributions . 7
1.5 Outline thesis . 8

2 Ambient Narrative Concept 11
2.1 Everyday life performances 11
2.2 Experience economy . 14
2.3 Ambient narratives . 17
2.4 Genre taxonomy . 25
2.5 Concluding remarks . 30

3 Eliciting Functional Retail Requirements 31
3.1 Retail insight creation . 32
3.2 Putting things in context . 36
3.3 Intelligent shop window ambient narratives 46
3.4 Requirements analysis . 49
3.5 Overview of requirements 59

4 Modelling Smart Environments 61
4.1 Definitions and notations . 61
4.2 Precondition checking . 76
4.3 Beat sequencing . 80
4.4 Run-time authoring . 86
4.5 Discussion . 87
4.6 Concluding remarks . 94

v

vi Contents

5 Ambient Narrative Engine 97
5.1 A database approach . 97
5.2 Beat sequencing . 99
5.3 Run-time authoring . 110
5.4 Component implementation 115
5.5 Concluding remarks . 117

6 An End-user Programmable Shop Window System 119
6.1 An end-user software engineering approach 120
6.2 Run-time system . 124
6.3 Simulator . 131
6.4 Editor . 134
6.5 Exchange Server . 144
6.6 Summary . 146

7 Evaluation 147
7.1 User evaluation . 147
7.2 System performance discussion 157
7.3 Cross-domain application discussion 158
7.4 Conclusions . 159

8 Conclusions and Future Work 161
8.1 Conclusions . 161
8.2 Suggestions for future work 165

References 171

Bibliography 172

Summary 189

Curriculum Vitae 193

Preface and Acknowledgements

When you put a thing in order, and give it a name, and you are all in accord,
it becomes – From the Navaho, Masked Gods, Waters, 1950

The start of this research goes back many years. In 1999 after I graduated
from the University of Twente on the use of visual thesauri in multimedia in-
formation retrieval, I was drawn to Philips Research that was forming its ideas
on ambient intelligence, a vision that puts the user experience in the fore-
ground and technology in the background. Philips Research and the New Me-
dia Systems and Applications group turned out to be an exciting place to work
in. The culture was open and informal, the projects highly innovative and the
teams multi-disciplinary. In 2000 I moved away from multimedia information
retrieval to presentation generation. The Internet had become serious business
and Philips was quick to see that all kinds of consumer electronic devices
with different capabilities would connect to this Internet. Since these differ-
ent devices would have different presentation capabilities, we would need to
adapt the presentation of the personalized music, media, content to the user
and his/her device. Not much later context entered into the picture and we
looked at how Semantic Web technology could be used to determine which
music should be presented in the environment for which user.

In that same period the user-centric design philosophy became increas-
ingly popular in Philips. In 2002 HomeLab, a facility to test and evaluate
ambient intelligent concepts with real users in a natural surroundings opened.
HomeLab and the user-centric design approach was a success but also had its
downsides. We spent many hours designing and building systems that were
suitable to do one or a few things well, but if you would want something dif-
ferent, you needed to start over and build a new demo. In the early days of
ambient intelligence the excitement and novelty of these early demonstrations
clouded this aspect from sight, but one day the excitement would diminish
and people would be asking us to deliver intelligent environments that could
support a wide-range of ambient applications at relatively low-cost.

The user-centered design philosophy would not lead to an answer of this
question. We needed an integral, holistic design philosophy that would look

vii

viii Preface

at experience from many different angles including philosophy, cognitive psy-
chology, sociology, economics, performance and literary studies. What is ex-
perience? What does it mean to experience something? What are the reasons
why experience plays such an important role in today’s society and economy?
What is the role of play and performance in culture? How can ambient intelli-
gence support these everyday life performances? What is the relation between
performance, text and interactivity in everyday life?

There were times when I thought this research would never condense into
a coherent whole, but if you hold on long enough to a specific problem and
persist, the solution will eventually form inside your mind and explain itself
to you. This book that lies in front of you is the result of that process.

This work would never have been possible without the help of many peo-
ple. The first word of thanks goes to my supervisors Emile Aarts and Arjen de
Vries. Arjen not only supervised this PhD research but also my master thesis
in 1999. He was the first to make me consider the idea of pursuing a PhD back
at the University of Twente and convinced me to do so. Without his motiva-
tion, support and patience this work would not have been possible. Thank you
Emile for all these many years you gave me excellent guidance and helped me
to stay focussed. I am honoured that Prof. Anton Nijholt, Dr. Lynda Hardman
and Prof. Matthias Rauterberg agreed to kindly join my committee.

Many (ex-)colleagues of the New Media Systems and Applications de-
partment have helped me throughout the years in the research that led up to
this thesis. Ramon Clout, Richard Doornbos, Warner ten Kate, Herman ter
Horst, Natasha Kravtsova played an imporant role in shaping the earlier work.
Special thanks go to Evert van Loenen as projectleader of the Dreamscreen
project, of which the intelligent shop window is part, and Vic Teeven, who as
manager of the ExperienceLab provided a stable home for the intelligent shop
window installation.

Without the help of the ExperienceLab team, Lars Kaijser, Rick van
Haasen, Han Kok, Tom Geelen, Roxana Frunza, Henk Sandkuyl, Arjan
Claasen and Peter Jakobs of the Software Engineering Services department
and Henk van der Weij of BigCamp Multimedia the ambient narrative shop
window system and its authoring environments would be an idea and not a
working system. Thanks for coding and maintaining the software for all
these years. I enjoyed the many meetings and discussions we had. Special
thanks also to Herjan van den Heuvel for his work on context modelling for
the ambient narrative engine, Tatiana Lashina for giving helpful comments
and improvements on the editor user interface, Angelique Kessels and Jettie
Hoonhout for helping me in setting up the user study in ShopLab.

I would also like to express my gratitude to Albert Boswijk, director of

Preface ix

the European Center for the Experience Economy, for sharing his knowledge
on the characteristics and trends of the experience economy and playing an
active role in finding retailers, designers and consultants for the user research.
Thanks also to Anna Snel of the University of Amsterdam for pointing me to
more great books and ideas.

Thanks to Philips Research management and in particular to Emile Aarts,
Maurice Groten, Reinder Haakma for supporting the research that led to this
thesis. I’d also like to thank all my colleagues at Philips Research who create
such a stimulating working environment.

Most of all, I’d like to express my gratitude to Linda and my parents for
all their love and support during the long time it took me to finish this project.
It is to them that I would like to dedicate this work.

Mark van Doorn, ’s-Hertogenbosch 2008

1
Introduction

The most fundamental technologies in our life are those that have disappeared
into the background of our everyday life, so much integrated in our way of
living that we simply take them for granted and forget how life was without
them. Take writing for example: We find writing not only in books, papers,
magazines, but also on street signs, maps, advertisements, packaged prod-
ucts and foods and so many other products and objects. We use this tech-
nology effortlessly and have become unaware of its presence. In a Scientific
American article entitled The Computer of the 21st century [Weiser, 1991],
Mark Weiser envisioned that the combination of ongoing miniaturization in
the semiconductor industry and device interconnectivity would not only lead
to better, faster computers but also to a new way of interacting with comput-
ers that could make computing as effortless and ubiquitous as writing: Instead
of interacting with one computer at a time, Weiser envisioned a world where
people would interact with many computers, in a wide variety different shapes
and sizes, each suited for a particular task, at the same time. Rather than each
fighting for our attention, these computing devices would move from the pe-
riphery to the center of our attention and back depending on our context.

Ambient intelligence [Aarts, Harwig & Schuurmans, 2002] refers to elec-
tronic environments that are sensitive and reactive to the presence of people
and builds on this ubiquitous computing vision. The goal of ambient intelli-

1

2 Introduction

gent environments is to support people in their everyday life activities through
technology and media. By positioning users and their needs in the center of
attention and technology in a supporting role, ambient intelligence essentially
adopts a user-centric design philosophy [Draper, Norman & Lewis, 1986] on
ubiquitous computing.

Over the past ten years, many research prototypes and demonstrations of
ambient intelligent systems have been developed, see e.g. [Dertouzos, 1999;
Kindberg, Barton & Morgan, 2002; Aarts & Marzano, 2003]. Many of these
examples are restricted in terms of application scope and usage. This has a
number of reasons. Technologically, it has proven difficult to design a device
or system in advance that is capable of dealing with the typically complex
and dynamically changing environments that we encounter in everyday life.
Multiple actors can be involved in several activities at once while using a
variety of devices at the same time. Narrowing down the application domain
is one way of dealing with this issue, but this complexity reduction can miss its
target if it results in putting aside these characteristics of social environments.
Moreover, a product-oriented, user-centered design approach has a natural
tendency to discard all elements that do not contribute directly to the end-user
experience or match current user needs. If these aspects are not taken into
account as (future) user needs this can result in applications that are hard to
reuse or difficult to extend over time [Abras, Maloney-Krichmar & Preece,
2004].

Rather than designing for the end-user and trying to address this com-
plexity and uncertainty in advance, an alternative approach is to design the
environment in such a way that it can easily be changed and programmed by
end-users. In this way the initiative shifts from the designer to the user, which
brings a number of advantages. First, it gives people the freedom to design
the environment around them the way they see fit. If people want a profes-
sional to design this environment for them, they have at least the possibility
to choose. This view also acknowledges the larger, broader social-economical
and cultural trend of empowerment, of making people active participants in
economical, political, and cultural decision making processes. Second, peo-
ple are likely to put more trust in the smart environment if this environment
works in a transparent, understandable and controllable way. Third, by estab-
lishing a continuous dialogue with the end-user, there is less of a burden on
the system to determine the next (sequence of) actions autonomously. If the
system encounters a conflict or is unsure about what to do next, it can simply
ask the user for feedback and correct itself.

1.1 End-user Programming 3

1.1 End-user Programming
Since the 1960s researchers have worked on a number of programming lan-
guages and environments with the goal to make programming more accessible
to a larger group of people. These end-user programming environments typi-
cally fall into two large groups [Kelleher & Pausch, 2005]: Systems that teach
people how to program (teaching systems) and systems that empower people
to build things that are tailored towards their needs (empowering systems),
which are of particular interest to us. Well-known examples of systems of
this latter category are spreadsheets, statistical packages, CAD/CAM systems
and web authoring tools. It has turned out that users of these systems are
willing to invest time in learning programming languages and environments
if that helps them to get their tasks done in a more effective or efficient way
[Nardi, 1993]. There are many ways of making programming more accessi-
ble to people. Research on end-user programming has therefore looked at
a wide variety of topics, including human computer interaction, computer
graphics and visualization, programming languages, programming models
and strategies, user modelling, empirical studies, computer supported collab-
orative work, and more recently software engineering [Burnett, Engels, Myers
& Rothermel, 2007]. In terms of application areas, ubiquitous computing and
ambient intelligence are still relatively new, but gaining more attention. For
example, the AutoHAN networking and software architecture [Blackwell &
Hague, 2001] supports people to define end-user programmable specifications
of interactions between appliances in a domestic environment and describes
a tangible interface (Media Cube) for direct manipulation. Truong’s CAMP
project [Truong, Huang & Abowd, 2004] uses a fridge magnet metaphor that
allows users to create context-aware applications for the home by combining
words from a controlled vocabulary into sentences to specify behavior. Hum-
ble [Humble, Crabtree & Hemmings, 2003] describes a way for end-users to
configure their ubiquitous domestic environments using an editor that discov-
ers available ubiquitous components and presents these components as jigsaw
pieces that can be combined into applications.

1.2 Smart Retail Environments
Most research on end-user programming of ubiquitous computing environ-
ments has focussed on the home domain, like most research on ambient in-
telligence. New technologies are however seldom first adopted by the home
domain. Consider telephony for example. The first telephones appeared in
public telephone cells and office buildings, only later did they find their ways
into the homes of people and more recently in people’s pockets and bags.

4 Introduction

Other examples are light bulbs, television screens, computers, printers. The
domestication of ambient intelligence may follow a similar route and start first
in the professional domain in areas such as monitoring hospital patients, intel-
ligent building control (energy management, security) and traffic control sys-
tems. In this thesis we concentrate on intelligent environments in stores and
brand spaces which provide entertainment, information or other immersive
experiences that enhance the retail function. There are a number of reasons
for looking at smart immersive retail environments.

First, shopping has become an important leisure time activity. People do
not just go to shops to buy things, they also go to shops and shopping malls for
the experience of finding out new things and spending time with friends. Large
shopping malls and shopping districts have transformed into tourist destina-
tions that attract thousands of visitors. South China Mall, the largest shopping
mall of the world in 2007 [Riper, 2007] had 1,500 stores in approximately 600
square kilometers of total floor area with 7 separate themed zones modelled
after cities and places such as Amsterdam, Paris, Rome, Egypt, the Caribbean,
and California.

Second, stores have a unique, personal brand identity. Brand image plays
an important role in attracting customers and setting the store apart from the
competition [Kozinets, Sherry, DeBerry-Spence & Duhacheck, 2002]. In an
experience economy where consumers look for authenticity in products and
services, and make decisions based on whether an experience is perceived as
real or fake, the physical setting can play an important role in rendering au-
thenticity [Pine & Gillmore, 2007]: Branded spaces give companies a chance
to show customers what they really are and give customers the choice to expe-
rience the identity of a brand and its products and services for themselves and
make their own value judgements. Companies such as Apple, IKEA, Volk-
swagen, Nike have all created branded spaces where people can experience
and interact with their brands.

Intelligent environments offer large retailers possibilities to create person-
alized connections with customers, connect to more customers (using pres-
ence in virtual worlds), and respond more rapidly to changes in fashion trends
[IBM Retail, 2008] beyond opportunities of becoming tourist destinations and
showing who they are to customers in search of meaningful and authentic ex-
periences. Immersive intelligent retail environments can also facilitate poten-
tial customers to test-drive a product or service before they buy it as discussed
by [Edvardsson, Enquist & Johnston, 2005]. IKEA furniture stores consist
of several experience rooms where people can try out furniture in a kitchen,
living room or bedroom setting for example.

Traditionally, the store frontend has been an important element in the retail

1.3 Focus of the thesis 5

environment. The goal of shop windows is to create enough stopping power
so that people walking past the store become curious to see what is inside.
Furthermore, the shop window is the first place where people can experience
what the store or brand stands for and therefore plays a key role in communi-
cating the type and style of the shop to people. The shop window also serves
to inform people about the products available. The store frontend is therefore
an interesting area to consider for improving with ambient technology and
media. One of the first examples is provided by Ralph Lauren who installed a
number of interactive intelligent shop windows in their flagship stores in New
York, London and Chicago. Customers can browse their collection 24 hours
a day and add items to their digital shopping cart [Toler, 2007]. Shoppers are
then contacted by e-mail or phone the next day to securely enter their pay-
ment information and arrange for shipping. Interactive (transparent) screens
can also be used inside the store to provide in-store communication or promote
individual brands. In the case of the Kijkshop, a Dutch electronics and house-
hold appliances retailer, the entire shop is one large shop window customers
can walk through.

1.3 Focus of the thesis
This thesis addresses the problem of deriving an organizing concept that cap-
tures the way in which we form experiences in our everyday life and integrates
interactive ambient media into this process. It proposes the design of a sys-
tem that supports retailers and designers to create, deploy and maintain their
own smart retail environments described in this general interaction concept to
support a mass customization strategy towards ambient intelligence. An im-
plementation and user evaluation of such a system is described for intelligent
shop windows that react to the presence and activity of people, which can be
seen a subclass of smart retail environments.

1.3.1 Research questions
Several ways to design an end-user software engineering approach for in-
telligent environments exist. The most straightforward way is a bottom-up
approach in which individual use-case scenarios of intelligent environments
are analyzed for commonalities and differences. From this analysis a gen-
eral template or prototype scenario would then be reconstructed that can be
customized by end-users on different aspects. Although this scenario-based
approach [Carroll, 1995] is useful in well-defined and focussed application
domains, it is difficult to apply to broader application domains as there seems
to be an almost endless variety of use-case scenarios. This thesis proposes a

6 Introduction

solution approach that starts out in a top-down fashion by deriving a general
interaction concept that describes the complex and dynamic nature of phys-
ical environments where multiple actors (both human and mediated) may be
involved in several activities at the same time using multiple devices simulate-
nously and that integrates ambient technology and media in this picture. Since
it has proven technologically difficult to design a device or system in advance
that is capable of generating this intelligence automatically for every individ-
ual context of use and economically infeasible to design a tailor-made solu-
tions for each individual situation, this organizing interaction concept needs
to support a mass customization approach. Our hypothesis is that such an ap-
proach is not only technologically feasible for a large subset of smart retail
environments but also suitable and usable for this target user group in their
everyday life practice. The first question can then be stated as follows:

1. How can we represent generic ambient intelligent environments in a
way that facilitates mass customization?

This representation that we will refer to as an ambient narrative can be
seen as a high-level description of how ambient intelligence emerges through
the situated actions of actors in their environment. To generate more specific
functional requirements and arrive at a suitable machine readable representa-
tion for such ambient narratives an application domain must be chosen. Be-
cause we want retail stakeholders involved in store design to be able to write
ambient intelligent environments in this high-level interaction concept we for-
mulate a second question:

2. Can designers in the retail domain understand the ambient narrative
concept and what are the specific requirements these users place on a
system design?

These different user, application and system requirements can then be
translated into a suitable system architecture. As total cost of ownership is
a key driver in the retail business, this system architecture should take into
account the entire lifecycle of designing, testing, deploying and maintaining
retail ambient narratives. At the same time there should be no noticeable dif-
ference for the retailer in terms of performance with a custom-built application
with exactly the same functionality. We restrict ourselves to a smaller but rep-
resentative set of smart retail environments, i.e. intelligent shop windows that
react to the presence and activity of people. The third question that arises then
is:

3. How does a system to control the lifecycle of such an ambient intelligent
shop window environment look like?

1.4 Contributions 7

This system architecture can then be implemented in a prototype system
that needs to be evaluated with real users in order to address the fourth and
final research question:

4. Can retail designers create ambient intelligent shop windows using the
prototype system?

1.4 Contributions
The research described in this thesis has resulted in four main contributions:
The ambient narrative concept, its suitability for smart retail environments, a
formal model to specify ambient narratives in smart retail environments, and
a prototype implementation validated with retail designers. More specifically:

� The ambient narrative concept as an organizing concept for representing
ambient intelligence environments in a way that lends itself for mass
customization.

Definitions of ambient narrative and ambient intelligence are given in sec-
tion 2.3.3. In addition this section shows how this high-level interaction con-
cept for intelligent environments facilitates mass customization of ambient in-
telligence. Section 2.4 provides different ways to classify ambient narratives
to illustrate the applicability of the concept in a wide variety of application
domains including retail.

� Validation of the ambient narrative concept with retail design stakehold-
ers and identification of user, system and application requirements.

Section 3.2 describes the results of a series of workshops and interviews
conducted with retailers, consultants and designers to create user-generated
ambient narrative examples and test whether retail users can understand the
ambient narrative concept (second research question). Section 3.5 provides
a list of the functional requirements that were derived from these workshops
and interviews. These requirements served as the basis for the design of the
prototype ambient narrative shop window system in Chapters 4, 5 and 6.

� A hypertext language model and formal system architecture to describe
and control the lifecycle of intelligent shop window ambient narratives.

Chapter 4 provides a formalization of the ambient narrative concept that
can be written down in a hypertext language model to represent ambient nar-
ratives. Chapter 5 describes the ambient narrative engine, the core component
in the system architecture discussed in Chapter 6.

8 Introduction

� User evaluation of the prototype ambient narrative shop window sys-
tem.

Section 7.1 describes the results of a user evaluation study to address the
fourth research question. One of the questions left unwritten is to what extent
this prototype ambient narrative system can be applied to other application
domains than the intelligent shop window. This question is briefly discussed
in section 7.3. We say here now that this research should be seen as step
towards achieving that goal.

1.5 Outline thesis
The remainder of this thesis is organized as follows. To approach the research
questions stated before, we adopt the spiral model for software development
(see [Boehm, 1988] and Figure 1.1 for a simplified version). In total we follow
two iterations: The first iteration is described by Chapters 2 and 3 and is
conceptual. The second iteration is covered by Chapters 4 to 7 and forms a
first design iteration.

Figure 1.1: spiral model

Chapter 2 investigates the social-cultural and economical factors that
shape ambient intelligence. In particular we look at the central role perfor-
mance plays in our everyday life and the emergence of the experience society
that draws cultural performance into the social-economical sphere. This back-
ground is used to derive the ambient narrative concept and present a taxonomy
of ambient narratives to discuss related work.

Chapter 3 places this ambient narrative concept in a retail context to eval-

1.5 Outline thesis 9

uate whether the target user group can understand and work with this concept.
We provide and analyse a list of user, system and application requirements
derived from interviews and workshops with retailers, designers and retail
consultants and an additional literature study on application user scenarios.
Chapter 3 also introduces the intelligent shop window application as the sub-
class of smart retail environments and presents the results of a user evaluation
on different authoring strategies.

Chapter 4 translates the informal requirements of Chapter 3 that relate to
the ambient narrative concept and the run-time behavior of the sytem into a
formal model. The problem of mass customization of ambient intelligence
from a set of dynamically changing modular fragments is formally described
and explained. Related work in situated action modelling, action selection as
interactive storytelling and authoring is also discussed.

Chapter 5 provides a detailed implementation of this formal model in the
ambient narrative engine that forms the central component in the shop window
system architecture.

Chapter 6 discusses the remaining informal requirements of Chapter 3
that refer to managing the lifecycle of ambient narratives and uses these re-
quirements to make design decisions that are implemented by the intelligent
shop window system architecture and its individual components (except for
the ambient narrative engine component).

Chapter 7 evaluates the programmability of the intelligent shop window
system by end-users by means of a user study and technical analysis. It also
discusses the limitations we posed upon ourselves by choosing this subclass
of smart retail environments.

Chapter 8 presents the conclusions and discusses directions for future
work.

2
Ambient Narrative Concept

In this chapter we follow a top-down analytical approach to derive a concept
that captures both the variety and dynamics in ambient intelligent environ-
ments in a way that facilitates mass customization. First we need to under-
stand better what ambient intelligence is and how it supports people in per-
forming their everyday life activities. In section 2.1 we start by looking at
the central role of play and performance in our culture and society. In partic-
ular we are interested in the everyday life performances that we enact when
we e.g. wake up in the morning, brush our teeth, have breakfast and drive to
work and the role of technology in enhancing these activities. In section 2.2
we investigate how this view of social life as theatre is also reflected in an
experience economy where we pay for access to commodified cultural experi-
ence. Section 2.3 applies literary semiotics theory to describe the interaction
between people and environment in which they perform their social cultural
scripts on a more abstract level in order to derive the ambient narrative con-
cept for representing intelligent environments. In section 2.4 we present two
genre taxonomies in ambient narratives to discuss and structure related work.

2.1 Everyday life performances
All the world’s a stage, And all the men and women merely players; They have
their exits and their entrances; And one man in his time plays many parts, His

11

12 Ambient Narrative Concept

acts being seven ages.– William Shakespeare, As You Like It (II, vii, 139-143)

The goal of ambient intelligence is to help people performing their daily
activities better by making these activities more convenient and enjoyable
through the use of interactive media. Notice the word performing in this de-
scription. It is a word used so commonly in our language that we forget that
performance is pervasive in culture and society, not just in the theatre, music,
dance and performance arts but also in our everyday lives: We perform the
role of a father or son in our private lives but maybe also that of a doctor,
judge, or police officer, for example in our working lives.

Because performances vary so widely from medium to medium and cul-
ture to culture, it is difficult to pin down an exact definition for perfor-
mance. Richard Schechner defines performance as “ritualized behavior con-
ditioned/permeated by play” or “twice-behaved behavior” [Schechner, 2002].
When people are performing, they display behavior that is at least practiced
once before in a similar manner. In traditional performance arts this behavior
can be detected easily: Actors in a theatre play, opera, or movie rehearse their
roles offstage and repeat this behavior when they are onstage. But this twice-
behaved behavior can also be seen in a priest conducting a wedding ceremony,
a surgeon operating on a patient, or a fastfood service employee behind the
counter. Even in our own homes, people show signs of this repeated behav-
ior. This happens for example during everyday rituals, like watching a soccer
match with friends, end of the day routines after coming home from work in
the evening.

Although many different perspectives on performance studies exist, they
agree that people follow culturally specified social scripts that influence each
other [Goffman, 1959; Burke, 1966; Turner, 1975; Fisher, 1989]. These ev-
eryday life performance are much less scripted than theatrical performances
and several authors view social interaction as an improvised performance
[Sawyer, 2001; Boje, Luhman & Cunliffe, 2003; Grove, Fisk & LaForge,
2004; John, Grove & Fisk, 2006]. However, Erving Goffman and others also
emphasize that our everyday life performances are highly constrained at the
same time by the scripts that we learn from our culture and that we are less
spontaneous than we would like to think.

The dramaturgical theory of social life is relevant to ambient intelligence
for two reasons: First, if people behave according to (improvised) social
scripts, we may succeed in codifying interactive media applications to support
people in carrying out these scripts. Just as lighting and sound effects add to
the overall drama of a theatre play, ambient intelligence may be applied to
improve the setting of the social front, support dynamic realization or avoid

2.1 Everyday life performances 13

misrepresentation for example. Second, positioning ambient intelligence in
this dramaturgical theory of social life opens up a well-defined and familiar
frame of reference for the design of ambient intelligence environments and
the underlying technology.

Figure 2.1 shows an example of how ambient media can improve the phys-
ical setting of waking up in the morning. Instead of a buzzing alarm clock that
goes off in the morning, the Philips Wake Up Light simulates a sunrise with
(optionally) the sound of singing birds, seashore or forest pond animals to
create a more natural wake up experience [Philips, 2007].

Figure 2.1: Supporting the wakeup experience with light and sound

Figure 2.2 shows a cartoon projected on a mirror TV (a one-way mirror
with an LCD screen behind) that invites the small child standing in front of
the mirror to brush his teeth for two minutes. The cartoon carries the child
through this daily task and helps the child to maintain expressive control.

Figure 2.2: Enhancing the toothbrushing performance with graphics

Another way of looking at this example is that the cartoon shifts the atten-
tion from achieving the end result to the process of getting there and brings the
child in a flow experience [Csikszentmihalyi, 1990] where the child is fully
immersed and engaged in performing the task. Many children (and adults) like
the demonstration in ExperienceLab [Lazeroms, 2002] and want to play along
but it has yet to be proven whether the effect is also positive in the long term
when the novelty of the cartoon wears off and people start to try out different
things (e.g., what happens if I do not brush my teeth?). At first glance there
seems to be no audience present. But if we look closer at Figure 2.2 we see
that the child is performing his act, the toothbrush activity, in front of the car-
toon character. The cartoon character improvises its performance based upon

14 Ambient Narrative Concept

the actions of the child. Goffman’s dramaturgical theory of social life extends
to computers. In fact it turns out that people are treating computer characters
as real people and see these characters as an audience that watches their ev-
eryday life performances. In their book The Media Equation [Reeves & Nass,
1996] present a series of psychological experiments that show that people are
polite to computers, react differently to male and female voices, and react to
large faces on a screen as if they are live people invading their personal body
space, for example. The “media equation” explains why we have higher ex-
pectations that a human avatar will behave intelligently than, for example, an
animal-like virtual character. This idea of viewing human computer interac-
tion as theater can be carried even further in the design of human computer
interfaces [Laurel, 1986]. Rather than viewing the computer as a tool, Brenda
Laurel views the computer as a medium for interaction in which the user (au-
dience) becomes an actor, active entity on the stage, the virtual world that is
populated by agents, both human and computer-generated and other elements
(props) of the representational context (windows, desktops).

2.2 Experience economy
Tell me and I will forget, show me and I will remember, involve me and I will
understand – Confucius

The dramaturgical theory of social life has been adopted by organization
studies and service marketing literature [Grove & Fisk, 1983; Fisk & Grove,
1992; Harris, Harris & Baron, 2003; Stuart & Tax, 2004; Oswick, Keenoy &
Grant, 2001; Clark & Mangham, 2004]. In service marketing, the service en-
counter can be seen as a performance that takes place on a particular location
(stage) and that involves service employees (actors) that deliver the service
to customers (audience). The service manager as the director of the service
performance is the person responsible for carrying out the business strategy
(script). Employees practice (rehearse) this script back stage before they go
on (front) stage [Fisk & Grove, 1992; Pine & Gillmore, 1999]. Managers
cast themselves into charismatic roles while employees are casted as allies to
manage the impression on the audience [Gardner & Avolio, 1998].

Within organization studies and service marketing there is a growing body
of research that not only accepts the organizational theatre as a metaphor but
take it literally [Pine & Gillmore, 1999; Clark & Mangham, 2004; Boje,
Adler & Black, 2005]. Joseph Pine and James Gillmore describe an expe-
rience economy in which “work is theatre and every business a stage” [Pine
& Gillmore, 1999]. They argue that staged experiences are valued higher by

2.2 Experience economy 15

customers than delivered services, manufactured goods, or extracted raw ma-
terials. Experiences fulfil a larger subset of customer needs, so customers are
willing to pay a higher price. Jeremy Rifkin further argues that in this ex-
perience economy, culture itself is being pulled into the commercial sphere.
Entertainment parks, themed shopping malls, and organized tourist travel are
just some examples where people no longer buy things, but pay to gain access
to services and commoditized culture [Rifkin, 2001].

Empirical evidence suggests that the ‘servicescape’, the environment of
the service, plays an important role in how people perceive a service encounter
[Bitner, 1992]. This suggests that ambient intelligence can also be applied in
professional service encounters to enhance the atmospherics of a service en-
counter and thereby the perception or performance of a service in a positive
way. Consider for example a medical imaging room in a hospital. Many pa-
tients feel frightened by the bulky equipment. By enhancing this environment
with immersive media for example, projecting personalized video clips that
are selected by each patient on the walls and ceiling of the examination room-
patients may feel more at ease, as illustraed in Figure 2.3.

Figure 2.3: Improving the performance of medical examination with ambient
media

Philips demonstrated this application concept in the ambient experience
pavilion at the annual meeting of the Radiological Society of North America
(RSNA) in December 2003. Today, several installations are being used in hos-
pitals around the world. In practice, about one-third of the children scanned
with a traditional scanner require sedation because they are unable to relax
enough for a successful diagnostic exam. This can add several hours of re-
covery time to a procedure that could be completed in 15 minutes [Physorg,

16 Ambient Narrative Concept

2007]. It turns out that patients feel less anxious with this ambient experience
than without it and this results in a lower percentage of people, especially chil-
dren, who need sedation and therefore less time these people have to spend in
the hospital.

As people increasingly make consumer choices based on the symbolic
value of consumer goods and with the goal to affect their own inner life [Bau-
drillard, 1985; Baudrillard, 1995; Schulze, 1992], every aspect surrounding
the purchase of a product, use of a product or delivery of a service can be
embraced by companies to infuse it with meaning. This can be the design of
the consumer good, the values of the company carried in the brand name but
also the physical environment where the product can be experienced. Themed
restaurants and hotels have been around for some time [Gottdiener, 2001;
Sherry, 1998], more recently brands such as Heineken, Volkswagen, Apple,
Nokia have opened up brand centres and flagship stores [Kozinets, Sherry,
DeBerry-Spence & Duhacheck, 2002] with a strong experiential environment
in many locations around the world, sometimes with great success: Revenue
for each square foot at Apple stores in 2005 was $2,489, compared with $971
at Best Buy, a big computer and electronics retailer in the same year [Lohr,
2006]. In the first quarter of 2007 more than 21.5 million people visited the
more than 180 Apple stores. Store sales were $855 million and they con-
tributed more than $200 million in profits [Stross, 2007].

Figure 2.4: Apple flagship store on Fifth Avenue, New York

More recently, several authors [Zuboff & Maxim, 2002; Prahalad & Ra-
maswamy, 2004; Boswijk, Thijssen & Peelen, 2007] describe a trend away
from staged (themed) and mass customized experiences towards a different
model where the experience is co-created in a continuous dialogue between
the company and the individual. By allowing individuals an active role in
the construction of the experience, the level of agency, of being part of the
event is increased, leading to a richer, more meaningful and memorable expe-
rience. This active role in value creation is different from allowing customers
access to the technology base of the company or having a customer interface
that enables customers to choose which features must be included in the final

2.3 Ambient narratives 17

product as in a mass customization strategy [Davis, 1987; Pine, 1992]. It is
also different from user-centric or participatory design or the use of anthro-
pologists because although potential customers are involved in the (concept)
design phase and early stages of product development, the dialogue is dis-
continued at the moment the product is mass-produced. In all these methods,
the firm creates the value and the focus of innovation is on product and pro-
cesses whereas in the experience co-creation model value is co-created and
the focus of innovation is the experience environment itself. An example of
such an experience environment is Lego Factory [Lego, 2008]. On the Lego
website, people can download Lego Designer, a PC application that enables
Lego fans to design their own Lego models. When they are happy with the
result, they can upload their model to the Lego Factory site. Lego calculates
which Lego bricks are needed, assembles the Lego bricks in a custom-made
Lego box and finally ships it to the consumer. The Lego community website
furthermore gives fans the possibility to share models with each other. The
gravity of innovation in Lego Factory shifts away from the Lego organization
to the Lego community, Lego Factory establishes itself as the nodal company
in the network that supports the individuals. Second Life [Linden Labs, 2008],
a virtual online world where players actively participate to the build the virtual
world and Vocation Vacations [Vocation Vacations, 2008] that offers people
the choice to test drive their dream job with the help of a mentor are other
examples.

2.3 Ambient narratives
Our story is in the land ... it is written in those sacred places ... My Children
will look after those places, that’s the law. – Bill Neidjie, Kakadu elder

Before we can derive a suitable abstract representation for intelligent en-
vironments (section 2.3.3) that captures the variety and dynamics of everyday
environments, it is necessary to analyze how personal experience and mean-
ing is being formed as people perform their social scripts in experience co-
creation environments. This process can be seen as a process of manipulating
symbols and since computers are symbol processing systems and our goal is
to find a representation that is readable by computers in Chapter 3 we adopt a
literary semiotical approach [Chandler, 2001; Rivkin & Ryan, 1998] to derive
a representation for intelligent environments. Broadly speaking, experience
co-creation environments are characterized by high levels of immersion and
interactivity. First the immersion dimension will be discussed through a semi-
otic perspective (section 2.3.1), then the interactivity dimension (2.3.2).

18 Ambient Narrative Concept

2.3.1 Spatial storytelling
In section 2.1 the focus was on performance and play as the object of study and
not so much on the environment where the performance is situated. By per-
forming in our environment we can choose the situation we are in but this sit-
uation will affect, alter us in a way we cannot control: Experiences are formed
in a subject-determined, reflexive and involuntary way [Schulze, 1992]. When
we form experiences, we read the signs (i.e. units of meaning) encoded in our
environment as text and create a personal meaning or story in our mind. Text
is therefore not restricted to written words on a piece of paper or characters
on a computer display.

Aboriginal culture for example views the landscape of Central Australia as
a text that is to be preserved for future generations by the people of Australia:
Aboriginal creation myths speak of legendary metaphysical beings that wan-
dered the earth during the Dreamtime, singing out the names of everything
that crossed their paths and in doing so they sang the world into existence.
In the Aboriginal worldview, every meaningful activity, every event that oc-
curs at a particular place leaves behind a vibration in the earth that echoes the
events that brought that place into existence. The Aboriginals see themselves
as the preservers of the invisible pathways or songlines that define Australia
and take great care not to disrupt these pathways by their actions [Chatwin,
1988].

Stories are not only found in the landscape, they can also be found in ar-
chitecture. Our perception of architecture is a function of the properties of the
enclosed space, cultural background and prior experience [Ching, 1996]: As
we walk through a building, we read the story that is being encoded in these
properties. If this story resonates with us, the piece of architecture becomes
meaningful to us, or as Le Corbusier writes: “Architecture is a thing of art,
a phenomenon of the emotions, lying outside questions of construction and
beyond them. The purpose of construction is to make things hold together;
of architecture to move us. Architectural emotion exists when the work rings
within us in tune with a universe whose laws we obey, recognize and respect.
When certain harmonies have been attained, the work captures us.” [Le Cor-
busier, 1960] (p.23). Throughout history, many visual spatial storytelling en-
vironments have been created for various purposes; see [Grau, 2003] for an
overview and discussion.

Theme parks explicitly create strong narrative structures in the landscape,
the architecture, the cast and the attractions people visit. Don Carson, imag-
ineer at Disney and video game designer, describes that “one of the secrets
behind the design of themed environments is that the story element is infused

2.3 Ambient narratives 19

into the physical spaces as the guest walks or rides through” and “that ev-
ery texture, every sound, every turn in the road should reinforce the concept”
[Carson, 2000]. Installation art [De Oliveira, Oxley & Petry, 2004] is an-
other example of such spatial storytelling environments. Installation art has
its origins in the Gesamtkunstwerk idea of music composer Richard Wagner.
Wagner envisioned the integration of different art forms, stage performance,
visual art and music art in what he called a Gesamtkunstwerk. Installation art
is not defined or classified in terms of a traditional medium, but in terms of
the message it conveys by whatever means.

As we perform, e.g. walk, drive or swim through such spatial storytelling
environments we use all our senses simultaneously to read the text that is en-
coded in various ways (e.g. marks in the landscape, architectural properties,
physical objects) and carried by multiple modalities (e.g. audio, visual, hap-
tic). Because our senses work in parallel (and each have a limited bandwidth)
we can therefore read more text in the same amount of time as in the case of
e.g. reading a book or watching a movie. The more text can be read in a cer-
tain amount of time, the higher the chance of being immersed into this text,
provided the message of the text is internally consistent. User experiments
confirm that a movie viewed with AmbiLight [Diederiks & Hoonhout, 2007]
is seen as more immersive than as one without. Random ambient lighting on
the other hand destroys the sense of immersion in the movie.

2.3.2 Reader text interaction
If environments where experiences are staged, personalized or co-created can
be seen as texts that are read, it is possible to set the perceptual characteristics
of such environments aside and focus on the interaction between the reader
(performer) and this text.

An experiential service that is being staged in front of an audience forms
a narrative in the minds of people. Theories of narrative and in particular
Russian formalism and French structuralism have made a distinction between
what is told (the story) and how it is told (discourse) [Chatman, 1978]. A
third category is the text consisting of signs that is produced by an agent who
conveys the story as discussed in 2.3.1. The story-part can be split into two
parts, existents (actors and settings) and events (actions and happenings). We
learn the story via discourse so the way the story is told can have a strong
influence on how the story is being perceived. Discourse analysis is concerned
with aspects such as plot (the causal and logical structure which connects
events), narrative voice (who tells the story), point of view (who sees the story)
and narrative modes (mimesis vs. diegesis or showing vs. telling). The story
of a staged experience is then the sequence of events as they happened on

20 Ambient Narrative Concept

stage. The narrative voice is that of the actors on stage and the point of view is
the customer’s. The narrative mode is mimetic, there is a direct representation
of speech and action. The plot is fixed, customers cannot change, alter or
otherwise affect the causal and logical structure of events.

More recently, post-structuralists thinkers like Rene Barthes, Michael
Foucault, Jacques Derrida and Julia Kristeva reject the belief in symbols of
constant and universal significance upon which structuralism rested, see e.g.
[Rivkin & Ryan, 1998]. Because of this unstable meaning and absence of
any objective truth, the meaning intended by the author of a text is seen as
secondary to the meaning the reader perceives. The literary critic should
‘deconstruct’ the text according to Derrida to create a multifaceted interpreta-
tion of the text using a variety of different perspectives. This for example also
includes analyzing why certain words have not been written as this can reveal
dominant relations in the text. Kristeva coined the notion of intertextuality
to indicate that texts are not isolated from each other but influence and shape
each other in different ways.

Reader-response theorists (see e.g. [Martin, 1986]) such as Rene Barthes,
Jonathan Culler and Wolfgang Iser join this line of thinking by arguing that
meaning comes into existence through the act of reading itself and is not
something that is hidden in the text waiting to be found. Reader-response
theorists view literature as a performing art in which each reader creates his
or her own text-related performance. The reader is always looking both back-
ward as well as forward in the text, actively structuring each part of new in-
formation encountered. Iser shows how abstractions such as implied readers
are mobilized and altered in their journey through a story and how the ex-
pectations, meanings and beliefs about characters and settings are explicitly
changed during the act of reading. Barthes in his post-structuralist analysis
of the short story Sarrassine van Balzac proposes five ‘codes’ (hermeneutic
code, code of semes, referential or cultural code, code of actions or proairetic
code, and code of symbols) and shows how they create multiple possibilities
of meaning as the readers follow them through the text.

Although customers as readers of a staged experience may each assign dif-
ferent meanings to the text they encounter, the story presented is the same for
all customers. In mass customization environments readers can choose which
components should be assembled to create a personal experience, story. This
choice of components can be explicit like clicking on a hypertext link or more
implicit: Depending on the way we perform, e.g. walk through a park or
museum or look at painting, a different is story is revealed to us. A mass cus-
tomization environment can therefore be seen as interactive narrative defined
by [Meadows, 2002] as a “time-based representation of character and action

2.3 Ambient narratives 21

in which a reader can affect, choose or change the plot. The first-, second-, or
third person characters may actually be the reader. Opinion and perspective
are inherent. Image is not necessary, but likely.” Hypertext novels and other
forms of interactive fiction such as computer adventure games are often clas-
sified as interactive narrative [Laurel, 1993; Murray, 1998; Meadows, 2002]
and contrasted with more traditional media such as books or movies, but the
division may not be so clear [Aarseth, 1997]. The author of a book can design
the chapter layout for a book in such a way that it supports different reading
paths similar to the author of a hypertext.

To analyze the role of the author and reader in interactive narrratives it
is more helpful to view narrative as a communication between a sender and
receiver, author and reader as depicted in Figure 2.5.

Figure 2.5: Model of narrative communication

In contrast to classical narratives there is a discontinuity between the au-
thor and implied author (the author’s second self inside the text) and the im-
plied reader (the audience presumed to be present inside the text) and the
reader. The author of the interactive narrative has deconstructed the narrative
into modular parts each having an implied author, narrator (one who tells the
story), narratee (one who listens to the story) and implied reader that make
up a plot structure which can be explored by readers. The reader determines
which fragment the implied reader will experience next through interaction.
The challenge of writing interactive narratives is to balance story and inter-
activity [Bates, Loyall & Reilly, 1991; Galyean, 1995; Meadows, 2002] to
create a coherent story no matter which reading path is taken.

In many computer games and other forms of electronic cybertext there
is no narrated plot that is under control of the reader. Instead the story is
formed as the result of an interaction between the user(s) and a symbol pro-
cessing system (machine or human), which may generate a different semiotic
sequence each time it is accessed. Espen Aarseth uses the term ergodic dis-
course [Aarseth, 1997] to describe this type of discourse that involves a non-
trivial amount of work (ergos in Greek) of the reader. Furthermore Aarseth
introduces a number of variables with different possible values that enable
him to define a typology for characterize the textual dynamics present in dif-
ferent forms of (electronic) literature that is helpful to characterize experience

22 Ambient Narrative Concept

co-creation environments. Table 2.1 sums up these variables and values:
Variable Possible value
Dynamics Static, IDT, TDT
Determinability Determinable, indeterminable
Transiency Transient, intransient
Perspective Personal, impersonal
Access Random, controlled
Linking Explicit, conditional, none
User function Explorative, configurative, interpretative, textonic.

Table 2.1: Terminology for (electronic) texts

Dynamics refers to how the text is revealed to readers. A distinction can be
made between the sequence of symbols as they appear to readers (scriptons)
and the sequence of symbols as they appear in the text (textons). A static text
has both fixed scriptons and textons whereas a dynamic text either has variable
scriptons and fixed textons (intratextonic dynamics) or both variable scriptons
and textons (textonic dynamics). In addition to the notion of scriptons and
textons, a text has a traversal function, which he defines as the “mechanism
by which scriptons are revealed or generated from textons and presented to
the user of the text” [Aarseth, 1997]. An interactive narrative where readers
are unable to change the modular story fragments can then be characterized by
intratextonic dynamics with an explorative traversal function (reader must de-
cide which path to take). Experience co-creation environments have a textonic
traversal function and dynamics (reader can add/remove textons).

Although Aarseth’s typology sheds more light on the differences between
classic texts, hypertexts and computer games, it only considers the surface
text, i.e. the text that appears to the user. Cybertexts can however have dif-
ferent layers of text and readers. The high complexity and associated devel-
opment costs of modern computer games [Blow, 2004] has led many game
studios to reuse the core game engine for multiple games or license it to other
game developers, see e.g. [DevMaster, 2008] for a list of commercial and
open-source game engines. In this case the game engine text (source code) is
read by a language compiler and compiled into the game engine executable.
This game engine reads the game level descriptions and creates the simula-
tion. This game level text can be modified by the reader, author or the game
itself and this can take place before, during or after the game. Many computer
games have a level editor that allows players to create new levels they can play
later. In massive multiplayer online games (MMORPG) and alternate reality
games [Szulborski, 2005] both players and professional game developers al-
ter the game level (content) as the simulation progresses [Tychsen, Hitchens,
Brolund & Kavakli, 2005]. Other games employ procedural generation tech-

2.3 Ambient narratives 23

niques to generate game level content on the fly or mix procedural generation
with user-generated content [Kosak, 2005]. These and other examples show
that the separation between reading and writing increasingly blurs in these
(virtual) experience co-creation environments and eventually disappears: In a
never-ending loop, the performance of the reader rewrites the simulation and
the simulation rewrites the performance of the reader. Being (narrative) and
becoming (simulation) become two different ways of looking at the temporal
consistency of a situation [Cameron, 1995]: If time stands still, the situation
appears to us more as a narrative: We are thrown out of the situation and
from a distance we can read the text as it exists at that moment and form an
impression in our mind. If time passes, the situation appears to us more as
a simulation: Through our performance in the cybertext we can change the
course of events and automatically feel as being part of the cybertext as it
becomes.

2.3.3 Definitions
If the environment can be seen as a text that is read using multiple senses
(2.3.1) by people who simultaneously improvise culturally defined social
scripts that affect, alter or otherwise changes this text again (2.3.2), we can
define an ambient narrative as a spatial-temporal multi-sensory interactive
narrative consisting of interrelated media-enhanced social script fragments
that are simultaneously read and rewritten by the performance of actor(s)
(human or machine)

The word spatial-temporal indicates that ambient narratives are not virtual
environments but environments grounded in real space and time. This space
can be identical to a particular place but can also be a union of a set of real
spaces distributed in space and/or time such as the individual stores of a retail
chain or the concert stage of a rock band touring the world. As people explore
these environments multiple senses are used simultaneously to read the ambi-
ent narrative (multi-sensory). Media-enhanced refers to the presence of digital
media and devices in the environment to support the performance of everyday
life social scripts. A place without technology embedded in the surroundings
falls outside the scope of the definition. Furthermore, these media-enhanced
social scripts are related: Depending on whether a person moves into the bath-
room or living room a different set of social scripts will become active or de-
active and this will cause particular devices, media and/or ambient effects to
start or stop. The collective performance of all the actors will affect how the
story progresses and may at the same time also alter the interactive narrative
itself. Figure 2.6 clusters different types of texts along the dimensions of mul-
timodal immersion (2.3.1) and interactivity/participation (2.3.2). The texts in

24 Ambient Narrative Concept

the upper part (and in particular the upper right) can be seen as ambient nar-
ratives as they have both a multi-sensory, spatial aspect and a dynamic textual
component.

Figure 2.6: immersion vs. participation

With this definition of ambient narrative in place it is now possible we
define ambient intelligence as the part of the emerging story in an ambient
narrative as the result of the collective performance of actors that is conveyed
through the set of user interfaces of the devices surrounding the actors in the
environment.

The ambient narrative definition inherently implements a mass customiza-
tion strategy because by performing in their environment people assemble,
personalize their own story or ambient intelligent experience from the avail-
able parts, i.e. media-enhanced social scripts present in the ambient narrative.
The media-enhanced social scripts are however not likely to be written in ad-
vance by the technology provider of the ambient narrative but by its users
because the social scripts differ from place to place and time to time [Brand,
1995] and therefore also the media and ambient effects attach to them. More-
over, the social scripts may be improvised by people and change the ambient
narrative at run-time instead of design-time. Note that this does not imply
there is no mass customization taking place; at the core of these co-creation
environments there can still be a mass customization process, the underlying
set of modular parts and their interrelationships is just dynamic. End-user pro-
gramming environments form a specific subset of co-creation environments
as they make people consciously aware that they are creating or modifying an
application by providing an interface to visualize and write program behavior.

2.4 Genre taxonomy 25

2.4 Genre taxonomy
To conclude this chapter we present two different ways to classify ambient
narratives with the goal to discuss and position related work.

2.4.1 Type of experience
One way to organize ambient narratives is by looking at the type of experi-
ence. Pine and Gilmore define four types of experience: educational, aes-
thetic, entertainment and escapist [Pine & Gillmore, 1999] (and combinations
thereof). These types of experiences vary in terms of active vs. passive in-
volvement and absorption vs. immersion as shown in Figure 2.7. Absorption
is defined as “occupying a person’s attention by bringing the experience into
the mind”, immersion as “becoming physically (or virtually) a part of the ex-
perience itself” [Pine & Gillmore, 1999] (p.31). The involvement dimension
is orthogonal to the participation dimension in Figure 2.6.

Figure 2.7: Genres in ambient narratives organized by types of experience

Examples of aesthetic ambient narratives can be found in digital installa-
tion art [Database of Virtual Art, 2008] and architecture that responds to the
presence and activity of people [Glynn, 2008]. The Weather Project [Elias-
son, 2003], Figure 2.8 (left) was an installation in the Tate Modern museum
in London that consisted of hundreds of monofrequency lamps on a giant

26 Ambient Narrative Concept

circular disc hanging at the far end of a large hall to represent a sun to cre-
ate a vast duotone landscape. Spectators could see themselves ithrough the
cloud-like formations of fog that was dispersed into the space in mirrors in
the ceiling. Sensing Speaking Space [Legrady, 2002] Figure 2.8 (middle) and
The Living Room [Sommerer & Mignonneau, 2001] are some examples of in-
teractive installations that create a space that becomes alive and starts to sense
users as they enter and interact with the room. In Sensing Speaking Space
an image is projected on a large screen and sounds are spatialized around the
audience through a 6 channel surround-sound based on their locations in the
gallery. The image and spatial sound changes as people perform in space in
front of the installation. The Living Room interprets the actions of people
in the environment to retrieve images from the Internet and blends these into
the projections around the users. Vectorial Elevation [Lozano-Hemmer, 2004]
was an interactive artwork that transformed the sky above the city of Dublin,
Ireland. Using a 3D interface and a website people could design huge light
sculptures that would be rendered with 22 robotic searchlights located in the
city in the sky above. House-swarming [Didier, Hess & Lutyens, 2007] Figure
2.8 (right) is an installation that operates both as a complex light pattern that
greets visitors and as an environment sensing system. During the day, swarms
of green ambiguous forms accentuate the entry of a building. At the end of
the day the swarm begins to come alive, telling visitors and people passing by
about e.g. the air quality around the building.

Figure 2.8: Aesthetic/Digital installation art

Location-based games as described by e.g. [Björk, Holopainen,
Ljungstrand & Akesson, 2002; Bell, Chalmers, Barkhuus, Hall & Sherwood,
2006; Rashid, Bamford, Coulton & Edwards, 2006; Baron, 2006] use a GPS-
enabled mobile phone or other portable device equipped with support for some
kind of localization technology to determine the location of players in the real
world and change the plot of the story based on their position in the real world
and the actions they take. A popular location based game in Japan is Mogi

2.4 Genre taxonomy 27

[Newt Games, 2003]. The goal of the game is to pick up virtual items with
a mobile phone that are hidden away in real places. Using their mobile or
via the website players trade these items to complete item collections and
score points. In augmented reality games such as [Thomas, Close, Donoghue,
Squires & Bondi, 2002; Cheok, Goh, Liu, Farbiz, Fong & Teo, 2004; Nor-
ton & MacIntyre, 2005] users wear a head-up display that superimposes the
virtual view on the real-world view in real-time and in 3D dimensions. In AR-
Quake [Thomas, Close, Donoghue, Squires & Bondi, 2002] (based upon the
computer game Quake) players have to find and kill virtual monsters that are
hiding in the real world. An augmented reality game where players have to
control virtual trains on a real wooden miniature railroad track using a hand-
held device that visualizes the invisible trains is described by [Wagner, Pin-
taric, Ledermann & Schmalstieg, 2005]. In both location-based games and
augmented reality games players experience the game through or on a single
portable device. More immersive examples of entertainment ambient narra-
tives can be found in alternate reality games [Szulborski, 2005]. Alternate
reality games are interactive narratives that are not restricted by medium or
platform: The plot can progress through e.g. printed ads in newspapers, web-
sites, phone calls, emails, and live events. Alternate reality games are designed
in such a way that players have a meaningful role in creating the story. Players
have to work together to solve the game. Because of their open-ended nature,
the game designers or puppetmasters continue to create new plot material as
the game runs. The Beast [McGonigal, 2003] is generally considered to be the
first mature alternate reality game. It was created as a viral marketing cam-
paign to promote Steven Spielberg’s movie A.I.: Artificial Intelligence. Other
examples of alternate reality games are e.g. I Love Bees (2004), Perplex City
(2005), Cathy’s Book (2006) and World without Oil (2007) [ARGNet, 2008].
An example of an indoor alternate reality game is the 5W!TS Tomb Experi-
ence [5W!TS, 2007] in Boston as shown in Figure 2.9 (left). In groups of
2-15 people and accompanied by a guide, players explore an archaeological
dig site to find the pharaoh’s burial chamber. The path and story of the 40
minute adventure aren’t fixed, but depend on whether participants are able to
solve challenges and avoid traps they find along the way. The tomb experience
includes sound effects and special effects that include dropping ceilings, trap
doors, lasers, fog and shooting air jets. La Fuga [McHugh, 2006] in Madrid
places players in a high-tech prison from which they have to escape as shown
in Figure 2.9 (right).

Context-aware tour guide applications for exploring cities e.g. [Abowd,
Atkeson, Hong, Long & Kooper, 1997; Cheverst, Davies, Mitchell & Friday,
2000; Izadi, Fraser, Benford & Flintham, 2002] and museums e.g. [Izadi,

28 Ambient Narrative Concept

Figure 2.9: Entertainment/Alternate reality games

Fraser, Benford & Flintham, 2002; Bowen & Fantoni, 2004; Chu, 2006] that
personalize information presented to users based on their knowledge level or
prior experience are examples of ambient narratives that are designed with the
goal to support learning. Similar to location-based games the story is con-
veyed by means of text, audio and video on a portable device and depends
on the location of the user in the physical environment. An adaptive museum
guide that combines education and entertainment is described by [Wakkary
& Hatala, 2006]. The e(c)ho system presents sounds such as the sound of
animals or their natural habitat based on the location of visitors in the exhi-
bition space. The audio is acoustically more prominent if a nearby artifact
matches the visitor’s interest. If a visitor is standing directly in front of an
object, a playful tangible user interface in the form of a wooden cube can be
used to navigate between linked audio objects associated to the displayed ob-
ject. Location-aware services or information spaces can also be classified as
educational ambient narratives. Examples are e.g. public ambient displays
[Vogel & Balakrishnan, 2004; O’Neill, Woodgate & Kostakos, 2004], mo-
bile retail and product annotation systems [Smith, Davenport, Hwa & Combs-
Turner, 2004] and public transportation information systems [Repenning &
Ioannidou, 2006]. Among the most immersive and engaging educational ex-
periences belong military training camps like the Fort Polk Joint Readiness
Training Center in Louisiana (Figure 2.10). This US Army training facility
that simulates the Middle East forms the last stop for thousands of soldiers
before they are deployed to war conflict situations around the world. Over
400 square kilometers in size and complete with 18 fake Iraqi towns complete
with mosques, schools and houses and including 1200 role-players who act
as Iraqi civilians, mayors, imams, journalists and humanitarian aid workers,
the aim of the JRTC is an ultra-realistic and detailed live simulation to give
commanders and soldiers the “experience before they experience it” [Beiser,

2.4 Genre taxonomy 29

2006]. During exercises, fireball cannons simulate explosions and fog ma-
chines and speakers fill buildings with smoke and the sounds of gunfire or
barking dogs to create a violent ambient intelligent environment.

Figure 2.10: Educational/Training camps and sites

The fourth quadrant is occupied by escapist experiences. Escapist experi-
ences let people ‘escape’ into an immersive environment where they can just
be. Examples include themed restaurants such as Planet Hollywood, Hard
Rock Cafe, Rainforest Cafe and the Marton (Chinese for toilet bowl) restau-
rant in Taiwan [Pescovitz, 2005] and themed hotels like the Venetian in Las
Vegas and the Hydropolis underwater hotel in Dubai [Hydropolis, 2008]. Of-
ten these environments include (interactive) lighting and ambient effects to
strengthen the theme. Another example of escapist ambient narratives can be
found in places where customers can experience the brand of a company as
discussed in section 2.2. NikeTown London, Nike’s flagship store in the UK
is a three story building that consists of separate housing areas, each dedicated
to a specific sport, which surround a central town square. In the middle of this
square is a 360 degree projection screen that displays photos about sports and
several interactive displays that reveal background information about Nike
products, Figure 2.11 (left). Every twenty minutes this central core comes to
life and starts a light and projection show. NikeTown also organizes special
events such as interviews with athletes and running clubs to turn the shop into
a destination where people enjoy spending time [Klingmann, 2007]. In the
Nokia flagship store in Helsinki the lighting, music and content on the screens
changes over the course of the day. In front of the screens hanging against the
wall, people can pick up Nokia phones and see information about this mobile
phone projected over the screen 1 as shown in Figure 2.11 (right).

1personal visit, August 2007

30 Ambient Narrative Concept

Figure 2.11: Escapist/Brandscapes

2.4.2 Service field
Ambient narratives may also be classified by service fields; [Fisk & Tansuhaj,
1985] define ten broad service categories: Health care services (e.g. hospi-
tals), hospitality, travel and tourism services (e.g. hotels, restaurants), finan-
cial services (e.g. banks), professional services (e.g. real estate, accounting
firms), sports, arts and entertainment services (football, opera, rock concerts),
channel, physical distribution, rental and leasing services (e.g. retailing, au-
tomobile rentals), educational and research services (e.g. day care, libraries),
telecommunication services (e.g. internet cafes), personal, repair and mainte-
nance services (e.g. hairstyling) and governmental, quasi-governmental, and
non-profit services. The medical examination suite in section 2.2 would fall in
the domain of health care services while the flagship store examples discussed
above can be positioned in the channel services category.

2.5 Concluding remarks
In this chapter we looked at the social, cultural and economical factors that
shape the ambient intelligence landscape to better understand how ambient in-
telligence helps people in performing their everyday life activities and rituals.
We learned how the ambient narrative interaction concept that was derived
from dramaturgical and literary theory can represent dynamically changing
intelligent environments in an generic, application independent way that fa-
cilitates a mass customization strategy towards ambient intelligence. In the
next chapters we focus on ambient narratives in the retail domain and work
our way towards a prototype system.

3
Eliciting Functional Retail

Requirements

The concept of ambient narratives can represent a wide variety of intelligent
environments in a modular way to implement mass customization strategies
for ambient intelligence as we have seen in the previous chapter. The expo-
sition of ambient narratives has deliberately been kept at an abstract, general
level to prevent ourselves from taking refuge in a narrow set of applications
and create artificial boundaries where there are none, as ambient intelligence
also does not make this difference in its definition. There is no reason why
technology should prevent a designer from authoring a smart hotel lobby en-
vironment where people could also lend or buy books. In order to validate
this concept with real users (both consumers and producers of smart envi-
ronments) and work our way from an abstract definition towards a concrete
system design, we must choose for a particular application domain. In this
chapter we refine the focus of this thesis to retail environments and intelligent
shop windows in particular (section 3.3). Section 3.1 describes the insight
generation process to understand the different stakeholders and their current
way of working with regard to retail atmosphere creation. In section 3.2 we
confront retail stakeholders with the ambient narrative concept and different
ways to author ambient narratives. The analysis of the functional requirements

31

32 Eliciting Functional Retail Requirements

for (intelligent shop window) ambient narratives is presented and summarized
in sections 3.4 and 3.5.

3.1 Retail insight creation
To understand the retail domain better and in particular the role of intelligent
environments in retail environments, we set up a number of interviews with
retailers, retail and hospitality consultants and designers. In 13 sessions we
spoke to 18 people with various backgrounds (retail management, hotel man-
agement, interior architecture, industrial design, cultural anthropology), levels
of expertise (2-20 years) and positions (professional designers, store owners,
independent consultants and retail store executives) in the Netherlands and
Finland and asked them in a structured interview about their current way of
working with regard to designing, configuring and installing interactive am-
bient effects, media and applications in retail. The contextual interview ques-
tions were adapted from [Mayhew, 1999]. This led to a number of insights for
the design and implementation of smart retail environment detailed below.

Insight 1 Shopping is a multi-sensory experience for customers
The first question we asked was what people thought of interactive immersive
retail experiences in general. All participants underscored the importance of
retail as a multisensory experience. Stores should be attractive and stimulate
the senses. A few people commented that today the emphasis is on image
and lighting but that scent, touch and audio are equally important to carry the
experience. The smell of fresh coffee or baked bread, choice of materials and
music may be more subtle but equally important. In general anything that
can be done in a store to improve the feelings and emotions of customers in
a positive way adds value. One retailer commented that he would lower the
temperature in the store, change the carpet and display a fireplace movie on a
TV screen to create a warm winter feeling when selling winter clothes.

Insight 2 Retailers can apply interactive technologies to create a personal-
ized customer experience in both direct and indirect ways
In terms of interactivity there were more differences. The majority of the
participants were positive about the potential of interactivity but had several
remarks. Both retailers and consultants commented that people do not want
to be spied upon and that the effects should not be too distracting. When de-
veloping interactivity in the store, care should be taken that it is done from the
customer’s point of view, based on shopper insights instead of commonly ac-
cepted beliefs about shoppers. The personal approach is important especially
for small stores. Instead of viewing personnel as a cost factor that needs to be

3.1 Retail insight creation 33

eliminated, hiring good service personnel can lift the customer experience to
a higher level. Rather than replacing the personal touch with interactive tech-
nology, interactive technology should assist shop employees to do their job
well. One consultant remarked that interactive technology is not only useful
for providing tailored information and setting the right atmosphere in the store
but can also be applied to measure and detect events such as how often people
touch which products for example. This data can then be logged and used
in data-mining to improve the store layout and product offering. This shows
there are many different ways to apply interactivity to enhance the customer
experience. One retailer commented his employees already enter customers
purchasing information and other sales remarks in a customer relationship
management system. A shop employee can type in the name of a customer
and get information about previous purchases, their likes and dislikes and so
on to personalize the service to the customer. It would be useful if technol-
ogy could recognize people that have already visited the store before so the
service personnel could start a conversation with them he continued. Another
participant argued that this personal approach can work well but needs to be
sincere, authentic.

Insight 3 The retail experience needs to stay true to the identity of the store
and its products
The element of authenticity was mentioned several times in various discus-
sions. Both the interactivity and multisensory aspect needs to stay true to the
identity of the company and the products, services and experiences it offers,
otherwise people will view the service offering as a cheap and fake one. This
can also mean bringing people back in contact with the ‘raw stuff’ of what
products and services are made of. Many (young) people have lost this con-
tact and have little or no idea about what a farm is, how clothes are made or
what it takes to create consumer electronic products. Some aspect of the expe-
rience lifecycle may be enhanced more than others without losing authenticity.
A store can both entertain, educate and be a place where people buy products
and services.

Insight 4 Shopping is a social activity for customers
Several retailers and consultants added that shopping is also a social activity.
Shopping malls and markets are places where people with similar needs and
lifestyles meet each other and can form communities. This social aspect is
often forgotten and could be supported with interactive technology instead of
surpressed further using interactive information screens where people can find
information.

34 Eliciting Functional Retail Requirements

Insight 5 Retail experience design is a multi-disciplinary effort
The second question we posed was whether people had experience in design-
ing, configuring, installing or programming lighting, media and ambient ef-
fects for shopping areas. The answers varied widely because of the different
backgrounds, levels of expertise and positions participants had, which pro-
vided useful insights into the roles of the different stakeholders in the value
chain as visualized in Figure 3.1. Note that depending on the complexity of
the store design, one or more roles can be taken on by the retailer or other
parties. The consultant group had no experience with designing, configuring,
installing or programming lighting, media and ambient effects. Their work is
at a more strategic level: In a dialogue with the retailer they define the business
goals and the desired customer experience and translate this into a store con-
cept that is then implemented by a design bureau. The designers’ experience
was mostly conceptual (storyboards, photos, sketches). Because experience
design is multisensory, it is multi-disciplinary work that involves interior ar-
chitects, product, lighting, sound, scent and graphics designers. The designers
(one interior architect, two lighting designers, two industrial designers) in our
group were similarly specialized. One of the designers commented that the
construction of interactive retail environments was technically complex and
too expensive. The lighting designers had experience with creating lighting
plans and finetuning these plans on location together with installers. The re-
tailers had experience with controlling the light levels, setting up a video pro-
jection, running screensavers on monitors and downloading images from the
Internet. Much of the configuration, installation and programming of light-
ing, media and ambient effects is done manually or outsourced to specialized
design bureaus.

Figure 3.1: Retail stakeholders in store concept design and implementation

Insight 6 Keeping the smart retail environment up to date needs to become
part of normal business for retail management
The manager of a chain of flagship stores we interviewed reported to have
experience with both lighting scene setting, LED lighting, audio/visual sys-
tems and building control systems to control heating and other environmental
aspects. He commented one aspect that can easily be overlooked is shop em-
ployee training and updating the ambient effects in the store.

3.1 Retail insight creation 35

Although the time to switch between pictures, light settings and ambient
effects takes less than a second, the time to update a store for a new collection
can easily take two or more days of work said one retailer. Another retailer al-
ready spends a few hours a week to choose pictures and write texts for product
presentation and placement in his store.

Insight 7 Ambient intelligence is to be taken into consideration from the
concept phase onwards
On the question if you design a new store concept when do you create the
effects and media applications for this concept (concept, design or implemen-
tation phase), there was almost a uniform agreement that the ambient intel-
ligence should be considered at the beginning of the process in the concept
phase. Three of the participants said they would take technology into consid-
eration in the design phase, after the store concept has been thought of.

Insight 8 Designers work both off-site and on-site and in an iterative way
In terms of where people would design these effects and applications the group
of small independent retailers preferred to work on location in an iterative
manner whereas the consultants and designers were more inclined to work
from their office or a combination of their office and location with feedback
of their customer in this process. The retail chain reported they would design
the audio, video and light effect playlists for a prototype store where they
would test it all first before uploading the playlists and the content to a central
repository from which all the other stores would look for new playlists and
content to update their in-store experience.

Insight 9 Designers use a variety of separate design methods, techniques
and tools in combination
On the questions how do you program these effects and applications now and
what tools and applications you typically use, the consultant and designer
group employed a wide variety of different methods, techniques and tools.
Sketches and storyboards made with pen and paper, digital photography (Pho-
toshop), 3D visualization and walkthroughs (AutoCAD, 3D Studio Max), city
trend tours and direct feedback on location were frequently mentioned. With
regard to configuration and installation, professional lighting control systems
and digital advertisement delivery systems for in-store marketing communi-
cation were being used by the larger retail chains. The more advanced interac-
tive installations found in e.g. flagship stores are custom-built using commer-
cial off-the-shelf hardware and software components. Although the content
playlists and lighting may be (re)programmed (centrally) the interactive be-

36 Eliciting Functional Retail Requirements

havior is fixed. There is no easy way for interaction designers to change the
mapping of sensors to actuators and how the system responds to shopper feed-
back and physical context changes (hardcoded into the application).

Insight 10 Retailers would like to change the appearance of their store more
frequently in an easy and faster way
The independent retailers we interviewed all wanted to change the appearance
of their store on a more regular basis. At present this is done four times a year
and sometimes only once. The consultants and designers mentioned this too.
The flagship store participants commented that the lighting and video clips
in their stores change during the day according to a playlist that is updated
weekly. Two other retailers when asked how often they would reprogram the
behavior and effects in his store said that the more flexibility, the more they
would use it.

Insight 11 Designers discover and correct errors through experience
When asked about which errors and problems people would typically en-
counter during configuration and programming and how they would discover
and correct those issues participants commented they would use their senses
to see, hear, feel and smell if something was not right. It should be noted that
none of the participants had experience with scripting behavior for intelligent
environments other than writing large but simple playlists and therefore may
not have encountered the need for debugging tools.

On the question what are the main bottlenecks and problems in your cur-
rent situation with regard to designing and programming smart retail environ-
ments lack of tools, high costs (and restricted budgets), available time (too
much content, not enough time to manage) and lack of knowledge on how to
apply it and develop quality content and scripts were mentioned. More flexi-
bility and more tools to do the work faster and easier so that possibilities can
be explored were seen as key areas of improvement. This reaction supports
the argument for a mass customization approach and need for end-user pro-
gramming environments for smart retail environments made in the research
questions section (1.3.1).

3.2 Putting things in context
Can retail stakeholders understand the ambient narrative concept and which
way of authoring ambient narratives do they prefer? To derive an answer for
both questions we conducted a series of workshops with the same group of
retailers, retail consultants and designers that were interviewed in the previous
section.

3.2 Putting things in context 37

3.2.1 User-generated ambient narratives
The concept of ambient narratives as spatial-temporal multi-sensory interac-
tive narratives in mixed reality can be difficult to convey to people with a
non-technical background. Instead of trying to explain this abstract concept
directly, a more indirect approach was followed: First, we asked people to
imagine their own store or a new store concept and draw this store layout on
a large piece of paper. Next, participants were asked to write down a num-
ber of use-case scenarios from the point of view of the shopper. From the
interviews we learned that many designers and consultants already work with
experience maps and story boards. Not all participants were equally good at
coming up with shopper scenarios in the one hour slot that was reserved for the
workshop. If people had difficulty in imagining scenarios, we helped them by
asking them what would happen if somebody would walk by the store, stood
still in front of the shop window display, entered inside, browsed through the
store, stand still in front of a product etc. After this step we presented them
with the theatre service marketing framework as discussed in section 2.2 and
asked them what their opinion was of this framework. Overall the partici-
pants liked this model and one of the consultants reported they use this idea
of retail scripting already in practice. Two people indicated the importance of
improvisation in service environments. Because an ambient narrative contains
different intertwined storylines, the participants were asked to decompose the
shopping scenarios into theatrical scenes, each having an action and situation
description and write these scene descriptions on a post-it, which they had to
position on the story layout. Although the process was structured, the partic-
ipants had the freedom to fill in the different tasks as they saw fit because we
wanted to see how they would approach these tasks and how they would for
example write down these scene descriptions. Figures 3.2 and 3.3 show two
examples we collected.

Fish outlet store
The idea behind the ‘fish outlet store’ ambient narrative in Figure 3.2 was to
transform an ordinary store where you can buy fish and other seafood into an
experience store where people besides buying seafood can be educated about
our relationship with the sea and fishing, learn how to prepare fish. Rather than
replacing the real thing with 3D simulations or videos, the participants argued
that the immersive, interactive technology should render the authenticity of
the products on sale. As people approach the store they see the catch of the
day, the seafood that is recommended that day on large projection displays to
seduce people to come inside (1). This is carried on inside the store (2). In the
center of the store, aquariums with living fish and sea creatures give shoppers

38 Eliciting Functional Retail Requirements

Figure 3.2: Fish outlet store ambient narrative

the feeling that the products sold here will be fresh (3,10). Recommendation
of sea food is personalized to the customer (3a). In this area people can also
experience where and how these fish live in the sea (9) using ambient media.
In the top-left corner, there is a restaurant area where people can taste fish
(7). In the top-right area there is a kitchen workshop where people can learn
how to prepare seafood (13). This example illustrates how experience design
integrates interior architecture, interactive media and ambient technologies.
Ambient intelligence plays a role in the overall experience but does not play
a dominant role, many of the post-its in this example do not even require
ambient technologies per se.

Used clothing store concept
Another participant came up with a used clothing shop concept where people
can buy secondhand objects such as clothes, books, radios, clocks and furni-
ture, see Figure 3.3. Example scenes are (with actual text written in Dutch):
As a person approaches the store, the age of the person is estimated and used
to personalize the product presentation in the shop window through highlight-
ing (Leeftijd schatting; aanbeveling 80 product d.m.v. uitlichting). If people

3.2 Putting things in context 39

Figure 3.3: Used clothing ambient narrative

enter the shop they see a large digital canvas in the back of the store (digitaal
behang) that can be controlled by store employees to react on the situation in
the store (winkel personeel interface). When a shopper walks up to a jacket
in the store and keeps standing in front of this object for a while, the jacket
is highlighted along with other products and accessoires from the same style
and period elsewhere in the store (Google ’tracking’, andere tassen, andere
producten uit die tijdsgeest). As a person brings a tagged piece of clothing of
e.g. the seventies inside the dressing room, seventies music starts to play in
the dressing room (kleding is getagt, jaren 70 disco muziek klinkt). The person
can take a sepia photo of herself with the address of the store on the back.

Analysis
In total the workshops resulted in 12 different ambient narratives, 76 use-
case scenarios and 117 post-its with scene descriptions. In addition to the
fish outlet and used clothing store, participants came up with ambient narra-
tives for an electronics store (2x), jewelry boutique, fashion shop, furniture
store, design store, hairdresser salon, banking branch and a concierge service
(physical place where people can design their own virtual alter ego and sub-

40 Eliciting Functional Retail Requirements

scribe to different services). Concepts that were mentioned several times were
product interaction (person picks up a product or otherwise interacts with a
product in the store and e.g. the lighting changes), digital wallpaper, multi-
sensory product and store presentations that react on external conditions (time
of day, weather outside, people on the street), interactive shop window and
in-store displays, personalized routing, co-creation environments (create your
own jewelry, virtual avatar) and experience rooms that can be customized by
shoppers.

The action descriptions of the collected scene post-its made use of visual
information in the form of text, graphics and video on a variety of display de-
vices, dynamic (colored) lighting, audio in the form of recorded speech, sound
effects and background music, haptic feedback, fragrances and environmental
effects (temperature, humidity levels). The actions varied from simple render-
ing to complex software applications. The situations described were analyzed
on used context information parameters. A context information parameter
can be defined as a single fact of information about an entity like the location
of a person or the identity of an object. Context parameters found were the
location of a person (actor) or device/object (prop) with regard to an area or
object, the profile of a person or object, person orientation, the activity of a
person or object (e.g. person standing, object switched off) and relation be-
tween a person and an object (e.g. person touches or looks at an object), date
and time, light and temperature outside. See Table 3.1 for the list of context
parameters found.

Next to the retail workshops an additional literature scenario survey was
conducted to determine the kind of context information needed by ambient in-
telligent surroundings [Van de Heuvel, 2007]. 32 home and 32 retail scenarios
were analyzed on used context parameters. In total 55 unique context param-
eters for the retail domain were found. The ten most frequently occurring
parameters cover 59% of the retail domain scenarios in this study. These ten
parameters were also found in the user-generated ambient narratives (Table
3.1). Adding actor profile and environmental condition brings the coverage
to 69%. Context parameters that were found in the literature study but not in
the workshops were more ‘exotic’ parameters such as human intentions and
emotions, perceptual attributes of objects (e.g. color, shape), object-object
and person-person relationships.

The style of writing on the post-its and the place of the post-its on the
store layout also revealed useful information. In general, the consultants and
some of the designers would describe scenes on an abstract conceptual level
with words such as veranderlijk, inspirerend, snel, zacht (transient, inspiring,
fast, soft) or first sketch the story in broad terms as in the fish outlet store case.

3.2 Putting things in context 41

Context parameter
relative position of an actor/device/object to an absolute area
absolute position of an actor/device/object to an absolute area
relative position of an actor to a specific device/object
absolute position of an actor to a specific device/object
relation (touch, gaze) between an actor and a device/object
actor profile (name, role, age, gender)
activity of an actor (waiting, walking)
actor orientation
device profile (name, capabilities)
device state (on/off)
date and time interval
external light and temperature levels

Table 3.1: Context parameters found in user-generated retail ambient narra-
tives

The other group of designers and the retailers in general were thinking more in
concrete scenes as in the used clothing store case. Furthermore we learned that
most participants focussed their attention on describing the action and creating
the desired effect and much less on the situation that should trigger this action.
One explanation may be because most people had little or no experience with
programming intelligent behavior and were therefore not used to setting such
rules. People would also use more post-its if the desired action and trigger for
that action would not occur in the same area. For example, a digital wallpaper
post-it would be placed on a back wall and the user interface (trigger) behind
the counter.

3.2.2 End-user programming strategies
In order to figure out which way of authoring ambient narratives designers and
retailers would prefer we proposed four different programming strategies to
the participants of the workshop sessions afterwards and asked them what they
thought about these individual strategies. To make sure everybody understood
it was not about the scenario but about the way the scenario was programmed,
we stated the same scene to start from in each of the four cases and explicitly
mentioned this. The scene we picked is one in which a transparent display on
a shop window shows an interactive shop catalogue when a person is standing
close in front of it.

Figure 3.4 shows a scenario where the retail designer sits in front of his
PC and looks at a 3D simulation of her store. The designer sees the 3D en-
vironment and walks with her virtual character to the shop window and sees

42 Eliciting Functional Retail Requirements

Figure 3.4: Programming in a 3D simulation environment

that nothing happens (left). The designer switches to her programming envi-
ronment and is presented with an overview of the location of people, devices
and objects in his store and which scenes are currently active (middle). The
designer presses a button to create a new scene for the shop window. First she
draws the stage in front of the shop window, then she associates a customer
actor and shop window device prop to this stage. She then sets the shop win-
dow to ‘interaction’ and saves the newly created scene. The designer switches
back to the 3D simulation and sees a picture of the interactive shop catalogue
on the virtual shop window (right). This programming strategy is based on the
idea of using a 3D simulation for rapid prototyping of ambient intelligence us-
ing a game engine as put forward by e.g. [Barton & Vijayaraghavan, 2003;
Shirehjini & Klar, 2005]. This scenario also partially supports Insight 8 (Re-
tail designers work both off-site and on-site and in an iterative way) as put
forward in section 3.1.

Figure 3.5: Programming on location using a portable device

Figure 3.5 presents a scenario where the retail designer is physically walk-
ing through the store and experiences the environment. The designer is de-
tected by the first shop window, but nothing happens (left). The designer
picks up the portable device and is presented with a real-time overview of
the situation in the store and which scenes are currently active. As in the
3D scenario, the designer sets the context situation and device actions using
the graphical user interface and saves the newly created scene (middle). The
designer then walks up to the first shop window and sees that the transparent
display in the shop window switches to the interactive shop window catalogue
(right). This programming strategy is an example of visual programming on
location using a hand-held device for context-aware applications as described

3.2 Putting things in context 43

by e.g. [Humble, Crabtree & Hemmings, 2003; Li, Hong & Landay, 2004;
Weal & Hornecker, 2006]. This approach is backed up by Insight 11 (Errors
are discovered and corrected through experience).

Figure 3.6: Programming by demonstration using physical objects

Instead of letting designers specify context-aware rules explicitly, pro-
gramming by demonstration, also refered to as programming by example
[Cypher, 1993; Lieberman, 2001], infers these rules from the behavior of
users. This method is proposed by the third scenario in combination with
tangible objects that represent people, devices and corners of sensitive areas:
Figure 3.6 shows a scenario where the retail designer is physically walking
through the store and experiences the environment as in the previous sce-
nario (left), but instead of taking a portable device, the designer walks up to
a tabletop interface and sees an overview of the location of people, devices
and objects in the store and which scenes are currently active. To create a new
scene, the designer demonstrates the desired context situation to the system by
physically placing tagged objects that represent actors, props and stage cor-
ners (middle). When the designer is done, she can save the scene and remove
the tagged objects. The designer walks up to the first shop window and sees
that the transparent display in the shop window switches to the interactive
shop window catalogue (right). Examples of programming by demonstra-
tion systems for context-aware applications are described by [Dey, Hamid &
Beckmann, 2004; Hartmann, Abdulla & Mittal, 2007]. A survey of physical
language design can be found in [McNerney, 2004].

Figure 3.7: Programming in augmented reality

Figure 3.7 shows a scenario where the retail designer is physically walk-
ing through the store and experiences the environment as in the previous two
scenarios. Instead of using tangible objects or a portable screen, the designer

44 Eliciting Functional Retail Requirements

puts on an augmented reality interface and sees through these glasses which
scenes are currently active and deactive and real-time information about peo-
ple, devices and objects. To create a new scene, the designer makes gestures
to draw a zone in front of the first shop window and selects from a menu
actors and props to associate to the newly defined stage. The designer then
takes off the augmented reality interface and walks up to the shop window to
see that it presents the interactive shop window catalogue. [Sandor, Bell &
Olwal, 2004] describe a demo where end-users can configure the setup of a
distributed user interface based on a shared augmented reality. Augmented
reality has also been proposed for visualizing architecture, see e.g. [Thomas,
Piekarski & Gunther, 1999; Krogh, 2000].

Results
Participants ranked the 3D simulation scenario highest in terms of usability
(mean = 5.8, median = 6, σ = 1.6 on a 7-point scale) closely followed by the
on location using portable device scenario (mean = 5.5, median = 6, σ = 1.4).
The programming by demonstration scenario was least appreciated (mean =
3.7, median = 4, σ = 1.5), the augmented reality scenario ranked third (mean
= 4.5, median = 5, σ = 2.7).

The 3D simulation environment was seen as a useful tool by both design-
ers and to a lesser extent also retailers. Some participants commented they
would already use 3D walkthroughs to visualize store concepts so this would
fit with their practice. Others commented that the testing and simulation of
especially lighting is difficult and that therefore a 3D simulation alone would
not be sufficient. Both designers and retailers liked the fact that this method
would enable them to program scenes at home or in the office. The program-
ming on location using a portable device was primarily seen as a tuning tool
for the retailer and the installer. The portable device was not seen as a prob-
lem, provided the user interface would be easy to use.

Participants had more doubts with the other scenarios. Most participants
could not imagine themselves using the programming by demonstration using
tangible objects scenario. Two designers liked the one to one mapping with the
real world and thought this scenario would be helpful for novice users but the
other participants thought this scenario was inefficient and time consuming.
User evaluations of in-situ authoring tools that implement a programming by
demonstration strategy show that users both liked these systems and are able to
successfully create applications with these tools [Dey, Hamid & Beckmann,
2004; Hartmann, Abdulla & Mittal, 2007]. Programming by demonstration
can also increase effiency [Hartmann, Abdulla & Mittal, 2007]. Research
done in tangible programming languages in the domestic domain [Blackwell

3.2 Putting things in context 45

& Hague, 2001; McNerney, 2004] and for children [Montemayor, Druin &
Chipman, 2004; Horn & Jacob, 2006] indicates that end-users like this way of
programming behavior. Our hypothesis is that tangible programming is less
interesting for retail and professional application domains than for home and
leisure environments where efficiency is less of an issue and that it is primar-
ily the tangible aspect in the programming by demonstration using tangible
object scenario that retailers, consultants and designers do not like. The reac-
tions on the augmented reality scenario were more mixed. Some participants
thought this visualization was the most intuitive and interesting one to use,
others thought this was too complicated and long-term. This latter opinion
is subscribed by e.g. [Azuma, 1999; Navab, 2003] who discuss a number
of technological challenges that the augmented reality research community
needs to face in order to succeed in real life situations, including better po-
sition tracking and dealing with unstructured dynamically changing environ-
ments.

On the question if people would use some scenarios in combination and
if so in what order, a few participants commented they would use the 3D sim-
ulation to design the intelligent behavior of the store at home or in the office
and the portable device or augmented reality glasses to finetune effects and
lighting levels on location. This result confirms our earlier findings that retail
experience design is a multi-disciplinary effort (Insight 5) which involves a va-
riety of separate design methods, techniques and tools in combination (Insight
9). Similar results are reported by [Weal & Hornecker, 2006] who discuss re-
quirements for in-situ authoring of location-based experiences based on the
lessons learned with an authoring environment to annotate a historic country
estate with location-based media. What they found is that the incremental
building up and changing of content is an integral part of the curator’s work
practice and that this is supported by in-situ authoring, however they also dis-
covered there may be a need for an explicit effort to fill the system with basic
content and that there should be different ways to define and change content
both on location and afterwards.

After their feedback on the four proposed authoring strategies a number
of other questions were asked. On the question “do you think it is relevant
for a store owner or employee to adapt the retail experience” all participants
agreed positively. On the same question but now for the customer instead of
the retailer, only a few participants answered that they saw a need (e.g. to per-
sonalize the fitting room). Most participants wanted to have control over how
the store appears. For suppliers answers were mixed. Some people thought it
could work for shop-in-shop situations where a supplier has its own product
booth that he can customize. One designer and retailer commented that sup-

46 Eliciting Functional Retail Requirements

pliers could deliver audiovisual content along with their products that could
be used by the retail designer in the retail experience. Another group argued
that the retailer should be in complete control. The answers on the question
do you think it is helpful to share programmed scenes with others and mod-
ify examples made by others were also mixed. Some participants argued that
this would help them to learn from others, others said they would be careful
because they did not want their smart retal environment copied elsewhere. It
should be seen as copyrighted content said one designer. The question do
you think it is useful to centrally change the behavior of individual stores was
answered with a strong yes by all participants except the independent retail-
ers. However it should still be possible to adjust this behavior locally noted a
number of people.

3.3 Intelligent shop window ambient narratives
One type of scenario that was mentioned often during the retail workshops
was that of a shop window that reacts to the presence and activity of people.
An example already discussed in section 3.2.1 is that of a shop window that
highlight products in the shop window based upon the profile of the person
standing in front of the shop window display. Another example found during
the workshops was a transparent display in the shop window that tries to attract
people walking by with moving images to invite them to come inside. One
designer suggested to place the shop window in the back of a hairdressing
salon concept to create the impression of an open inviting space. Several
retailers and consultants also commented that the shop window is crucial in
making the first right impression and draw people inside the store. Intelligent
shop window environments therefore seem a rich and interesting area to look
into further.

With these functions of shop windows and example scenarios in mind a
intelligent shop window prototype was built in a user-centered way [Van Loe-
nen, Lashina & Van Doorn, 2006]. The goal of this prototype was to demon-
strate the concept to retailers and shoppers and later compare this custom-
built, monolithic version with a modular ambient narrative version. This ex-
ercise is useful to determine the steps needed to refactor a traditional user-
centered designed application into the modular ambient narrative model and
the problems that are encountered during this process. Furthermore, it allows
evaluation of both approaches in terms of system performance and function-
ality. The shopper in the end does not care about whether or not the retail
experience is based on a modular platform as long as the functionality and
performance is the same. The results of this system evaluation can be found

3.3 Intelligent shop window ambient narratives 47

in section 7.2. In the remainder of this section the use case scenario of the first
intelligent shop window prototype is discussed. This scenario integrates dif-
ferent elements that came up during the retail workshops and that were found
in related work on public ambient displays and places them in a fashion store
setting.

3.3.1 Use case scenario
Emily and Olivia have an afternoon off from work and decide to go shopping
for fun. When they approach the high-end fashion store near the central
plaza of the shopping mall, they see moving images of the latest women
collection on the shop window. Attracted by the sight of pictures that seem
to be hanging in mid air, Emily moves closer to the shop. The shop window
tries to capture her attention by playing music and showing pictures near
her. Emily follows the music and turns towards the shop window. Soon her
attention falls on the pair of shoes on display. After a few moments she sees
information about the shoes appear on the shop window in front of her. The
shoes in the store are also highlighted. Come over here, she says to Olivia.
As Olivia approaches the shop window, she is not greeted with music and
imagery because Emily is still interacting with the shop window. Olivia walks
up to the shop window section next to Emily and points to a dress behind the
shop window. Immediately, a product catalog appears on the shop window
and Olivia starts to browse through the collection and sees more items she
likes to buy. Olivia and Emily decide to go inside. [Van Loenen, Lashina &
Van Doorn, 2006]

Several different elements can be identified in this scenario. First, the in-
teraction style depends on the distance of the shopper to the shop window.
When people are at a distance, the shop window tries to attract people with
images as they move closer the product slideshow disappears and an inter-
ative shop catalogue appears that allows shoppers to browse the collection.
This idea is adapted from [Vogel & Balakrishnan, 2004] who identity four
interaction phases (ambient display, implicit, subtle and personal interaction)
facilitating transitions from implicit to explicit, public to personal, interaction.

Unlike most public ambient displays, the intelligent shop window does
not replace but augments the view of the products on display behind the shop
window to allow shoppers to see inside and make the store look larger. To
achieve this effect a shop window can equipped with a holographic foil that
enables a beamer under a specific angle to project images and videos on the
glass. This technique has been used in a couple of Ralph Lauren stores [Toler,
2007]. Besides conveying information, the displays simulatenously try to at-

48 Eliciting Functional Retail Requirements

tract people with aesthetically pleasing graphics. This is combination is also
proposed by e.g. [Fogarty, Forlizzi & Hudson, 2001] who describe decorative
public ambient displays that contain information.

Directional audio and an interactive shop catalogue screen that is smaller
than the shop window itself provides a form of narrowcasting that protects
people’s privacy. In the scenario two shoppers can browse through the shop
collection at the same time. A public ambient display framework that also
supports multiple users simulateneously accessing information that contains
both public and personal elements is presented by [Cao, Olivier & Jackson,
2008]. An example of a public ambient display in a hospital setting with
both public and private information is discussed in [O’Neill, Woodgate &
Kostakos, 2004].

Besides implicit forms of interaction such as the position of a person in
front of the shop window, the scenario also illustrates different ways of explicit
interaction: A shopper can bring up information about a product on a transpar-
ent display in the shop window by either looking at the product or touching the
glass. Most examples of public ambient displays are based on touch see e.g.
[Vogel & Balakrishnan, 2004; O’Neill, Woodgate & Kostakos, 2004; Toler,
2007], a multi-touch example is presented in [Peltonen, Kurvinen, Salovaara
& Jacucci, 2008] who report positive results with this form of explicit inter-
action in the context of a photo sharing application in the city of Helsinki.
Gaze feedback as a modality for interacting with ambient intelligence envi-
ronments is explored by [Gephner, Simonin & Carbonell, 2007]. [Qvarfordt
& Zhai, 2005] couples gaze feedback to information presentation for a desk-
top tourist application. When a person looks at a map on a screen, an arousal
score is calculated for each object in the map. If this score reaches a certain
predefined threshold, the object is activated and the information about this
object is presented on the screen. [Prasov & Chai, 2006] describes how a con-
versational interface can use gaze direction to determine where the attention
of the user is to eliminate ambiguity in speech recognition. An overview of
different interaction technologies for large displays is given by [Bierz, 2006].

Finally, the scenario shows how feedback is given using multiple modali-
ties simultaneously. When people interact with the shop window they will not
only receive feedback through the screen, but also via light and audio cues.
This functionality is interesting to visually impaired people.

Because many retailers expressed their concern about letting customers
change the appearance of their store front, the scenario does not support shop-
pers to e.g. annotate the shop window display with electronic notes or other
media content as discussed by [Peltonen, Salovaara, Jacucci & Ilmonen, 2007;
Tang, Finke & Blackstock, 2008].

3.4 Requirements analysis 49

Figure 3.8: Intelligent shop window set-up in ShopLab

Figure 3.8 shows the first prototype developed and integrated in ShopLab,
a controlled but realistic shop environment on the High Tech Campus in Eind-
hoven for usability and feasibility testing. The prototype has been shown to a
large number of both internal and external visitors since the summer of 2006
and generated a lot of interest from both retailers and potential shoppers. The
possibility to attract people, show product information (also when the shop
is closed) is liked by retailers. Shoppers responded that they would not feel
strange using the intelligent shop window in a public environment and said
they would be interested in obtaining more information about products on
display via the intelligent shop window. A user study on the different inter-
action styles (touch and gaze interaction) and feedback mechanisms (visual,
lighting and mechanical turn tables) is described by [Kessels, 2006].

3.4 Requirements analysis
The derived ambient narrative concept, collected user insights (3.1), user-
generated retail ambient narratives (3.2.1), results of the user study on end-
user programming strategies (3.2.2) and the intelligent shop window user sce-

50 Eliciting Functional Retail Requirements

nario (3.3.1) can be combined and analyzed for requirements to be placed on
an ambient narrative system with authoring support for smart retail environ-
ments.

To structure this requirement analysis process we first considered the ba-
sic characteristics of the ambient narrative concept. This led to a first set of
functional requirements and created a mental box in which we would have to
position the other functional requirements. This decision is justified by the
user-generated ambient narratives that were collected and the feedback we re-
ceived from participants. The next step was to look into the user-generated
retail ambient narratives and the shop window scenario and search for appli-
cation and system requirements with the performance and functionality of the
system in normal operation in mind. The formal model in the next chapter
is derived from these two sets of functional requirements. Third, we shifted
our attention to supporting end-users to control the lifecycle of ambient narra-
tives. The collected user insights and the results of the user study on different
authoring strategies were used as input. This set of functional requirements
was used to derive the overall system architecture that will be discussed in
Chapter 6.

The outcome of this elicitation process is a list of thirty requirements that
we have grouped into four categories: ambient narrative concept implemen-
tation, run-time system performance, end-user authoring user interface and
end-user software engineering support.

The ambient narrative concept requirements cover the aspects a system
needs to address to implement the high-level ambient narrative interaction
model. The run-time system behavior requirements deal with the functionality
and performance of the system in normal use. The end-user authoring support
requirements include aspects such as visualization of the internal and external
state of the environment and control of designers over the behavior of the
system. The end-user software engineering support requirements deal with
controlling the lifecycle of ambient narrative fragments by end-users such as
testing, porting and versioning of ambient narratives.

The next sections contain the list of requirements for each category that an
ambient narrative platform, which supports retailers and designers to create,
deploy and maintain their own smart retail environments should fulfill. When
certain requirements support or enable other requirements this will be explic-
itly mentioned. Ease of use of the authoring environment, creative freedom to
design the behavior of the intelligent environment in the way designers imag-
ine, and total cost of ownership of the total system are key factors that are
addressed by many of these requirements and therefore not mentioned indi-
vidually.

3.4 Requirements analysis 51

3.4.1 Ambient narrative concept requirements
Ambient narrative concept implementation requirements deal with the system
aspects for implementing the ambient narrative interaction model.

Requirement AN.1. Social scripts enhanced with ambient technology
The ambient narrative interaction model integrates ambient media and appli-
cations into the dramaturgical theory of social life as discussed in sections 2.1
and 2.2. People perform culturally defined social scripts that can be detected
and enhanced with ambient technology. When a social script is being per-
formed and recognized, the associated device action(s) must be rendered on
the specified device(s).

Requirement AN.2. Mass customization of ambient narrative fragments
To support mass customization strategy for ambient intelligence the intel-
ligent environment needs to be broken down into smaller fragments (Re-
quirement A.1) that are assembled based on customer specifications in a
customized product (ambient intelligence). The customer specifications are
elicited through the collective performance of actors in the environment:
By interacting with the ambient narrative and performing social scripts, ac-
tors implicitly select and sequence the ambient intelligence fragments into a
story. Ambient intelligence is that part of the emerging story that is conveyed
through the devices that surround the actors in the environment and perceived
by users (section 2.3.3).

Requirement AN.3. Separation of ambience and intelligence by a network
The application intelligence should be disembodied from the tangible, phys-
ical devices that render the ambience as much as possible so we can view
ambient intelligence as an information product or service that is delivered to
(the devices surrounding) the user. This has a number of advantages. First, the
rendering devices can be kept simple, standardized and mass produced at low
cost. They can be installed once and do not have to be replaced. Second, infor-
mation products have the advantage over physical products that they carry no
weight, do not occupy shelf space and can be produced and delivered almost
instantly. This makes mass customization of intangible information products
often economically more attractive than mass customization of physical prod-
ucts, especially in the context of a global network society that operates in a
demand-driven way [Van Doorn & De Vries, 2006].

52 Eliciting Functional Retail Requirements

Requirement AN.4. Run-time modification of ambient narrative fragments
To support experience co-creation environments and end-user programming
of ambient narratives (section 2.3.3, human actors and/or software agents
working on behalf of human actors should be able to add new fragments, edit
existing fragments or delete old fragments while the system is running. In an
(end-user) authoring tool for ambient narratives this modification is done in an
explicit way: Authors use the authoring environment to modify the ambient
narrative. Fragments may also be generated by other fragments. In this case
the set of fragments in the ambient narrative changes indirectly as the result
of the collective performance of actors in the environment.

Run-time modification of ambient narrative fragments is also interesting
if we consider a shop as a place where people with similar interests meet each
other (Insight 4). Customers could personalize the ambient intelligence in the
shop to their interests.

3.4.2 Run-time system behavior requirements
Run-time system behavior requirements cover the functionality and perfor-
mance of the system that are not specific to the ambient narrative concept and
do not address authoring support. The run-time system behavior requirements
can further be divided into functionality requirements (Requirements RT.1 to
RT.4), performance requirements (Requirements RT.5 to RT.7) and flexibility
requirements (Requirements RT.8 and RT.9).

Requirement RT.1 React on implicit context changes
The list of context parameters found in the user-generated retail ambient nar-
ratives can be found in Table 3.1 (p.41). In the intelligent shop window sce-
nario in section 3.3 the following context parameters can be found: relative
position of a person and device to an area (e.g. person standing in front of a
shop window), device identifier (e.g. one of the four transparent displays) and
the relation between a person and an object (e.g. person looking at a prod-
uct in the shop window). The system should keep a model of these context
parameters and react to changes of these parameters.

Requirement RT.2 React on explicit user feedback
Next to implicit context changes the system should also respond to differ-
ent forms of more explicit user feedback coming from applications that were
started on devices. Clicking with a mouse on a button in a screen-based in-
teractive media presentation in the store or pointing by hand to an item in the
interactive catalogue application on the transparent shop window display in
the shop window scenario can result in the activation or deactivation of other

3.4 Requirements analysis 53

ambient intelligence fragments (e.g. highlight a tile behind the product on the
shelf).

Requirement RT.3 React on state changes
The system should not only react to external changes (implicit context changes
or explicit feedback) but also to changes in its internal narrative state. This
requirement was not found during the workshops but can be derived from
the intelligent shop window scenario. If there is a person standing in front
of one of the shop windows and nobody in the area further away from the
shop windows, both the product presentation slideshow and the interactive
shop catalogue will be started whereas in the scenario only the interactive
shop catalogue should be active. System session state information is needed
to support this behavior.

Requirement RT.4 Timing and synchronization of actions over multiple de-
vices
From the interviews we learned that shopping is a multi-sensory experience
(Insight 1) and that interactive technologies can add to a more personalized
customer experience in different ways (Insight 2). Therefore we could expect
a wide variety of different devices and applications running on those devices.
This was confirmed by the workshops (section 3.2.1). The system should
therefore be able to control which applications, media and ambient effects on
those devices are started and at what absolute or relative time after a social
script with its associated device actions has become active.

Requirement RT.5 Users do not experience a difference in performance
with a custom-built system
Customers in general will not be interested in whether the smart retail environ-
ment implements the ambient narrative interaction model or is custom-built as
long as the system works smoothly. The overall system should have a fast re-
sponse time and work without many glitches in normal operation. There must
be no noticeable difference in run-time performance with a custom-built sys-
tem that implements the same use case scenario(s).

Requirement RT.6 Scalable in terms of sensors and actuators
In a realistic smart retail environment there will be many sensors that generate
streams of data that need to be processed sufficiently fast in order to make
timely decisions about which actuators should be controlled. The more sensor
input available, the more context parameters can also be sensed and the more
situations can be detected by the intelligent environment and responded upon.

54 Eliciting Functional Retail Requirements

The expressiveness of the system is bounded by how much sensor data it can
process in real-time (Requirement RT.5). The run-time performance of the
system should therefore be able to address a number of sensors some of them
generating large amounts of data. Filtering sensor data is one way to reduce
this sensor data overload but the system should ensure no relevant information
is discarded during this process.

On the actuator side, retail designers of smart retail environments should
be able to add more devices such as extra transparent displays as in the intel-
ligent shop window scenario without experiencing a degradation in run-time
performance.

The intelligent shop window user scenario only covers a small area of the
shop and does not need to control many sensors and actuators.

Requirement RT.7 Robust against sensor and actuator failures
Retail environments need to be open all day during the week and often also in
the weekends. The shop (window) cannot be closed to perform maintenance
work during the day as this will cause lost revenues for the retailer. The sys-
tem should be robust against (temporary) sensor and actuator failures. If one
sensor or actuator fails the system should continue to work as best as possible
by graceful degradation in terms of functionality offered.

For a research prototype this requirement can be relaxed.

Requirement RT.8 Plug and play actuators
Among the ambient intelligence fragments collected, a number of fragments
were identified that involved a portable device as part of the retail experience.
To support portable devices that can play a role in smart retail environments,
for example a mobile phone that will show information about a product on
display if it is close to that product, the system should automatically recognize
new devices and know when devices are no longer present. In the intelligent
shop window scenario this functionality is not necessarily needed.

Another reason for supporting plug and play devices is that this allows the
system to grow with the retailer’s business. A retailer could start small with
a single transparent display behind a shop window for example and buy extra
transparent displays and LED wall washers to illuminate the back wall later.
This reason alone would be insufficient for this requirement as the installation
of new devices (e.g. cabling, mounting equipment) probably requires the store
to be (partially) closed and the system taken offline anyhow.

3.4 Requirements analysis 55

Requirement RT.9 Plug and play sensors
Similarly the system could support plug and play sensors. This requirement
is considered to be less important than the previous one as none of the user-
generated retail ambient narratives contained a fragment that used this feature.
However, it is possible to imagine a scenario where a person comes into a
room wearing a body sensor that detects biometric signals that will cause an
ambient intelligence fragment to be activated that sets the light in the room to
reflect the mood of the person.

3.4.3 Authoring user interface requirements
The authoring support requirements deal with visualization of the state of the
ambient narrative system so designers can understand how the system works
(Requirements UI.1 to UI.5) and the behavior of the intelligent environment
that should be placed under control of the designer (Requirements UI.6 to
UI.8)

Requirement UI.1 Summary of active and inactive ambient intelligence
fragments
To change the behavior of the ambient narrative, users should know which
ambient intelligence fragments are already active and which fragments are
stored in the system but currently not activated. The authoring tool should
visualize this information in an intuitive way so that designers can quickly
figure out what the state of the system is.

This overview also helps the retailer or retail management of a chain of
stores to see which scripts are being performed by customers and service per-
sonnel in a shop at the moment. The activated scripts could be logged together
with their timestamp to collect statistics about the activities that take place in
a store and gather insights about shoppers. An example of tracking shopping
behavior, demographics and trip types is provided by [VideoMining, 2008].

Requirement UI.2 Summary of current context situation
The current model of the context as sensed by the system should be visualized
so the designer or system operator can check if people, devices and objects
are recognized by the system. This helps the designer to quickly figure out if
all devices are turned on and work correctly and also assists the designer in
determining why a particular fragment is currently not activated.

Requirement UI.3 Identification of ambient intelligence fragments
The designer should be able to quickly identify which media-enhanced social
script is presented by which ambient intelligence fragment in the list of active

56 Eliciting Functional Retail Requirements

and inactive fragments (Requirement E.1). Most photo browsing tools use
image thumbnails so that designers can quickly browse relatively small image
databases [Kang, Bederson & Suh, 2007]. Similarly, designers could take a
photo or make a video clip of the effect of the ambient intelligence fragment to
add an illustration along with the name of a new fragment to find a particular
fragment back more easily.

Requirement UI.4 Overview of ambient intelligence fragment situation
The social script that triggers the device actions of an ambient intelligence
fragment needs to be visualized to the designer in an intuitive way if the
designer views or edits the fragment in the authoring tool. As we adopt a
dramaturgical framework in a retail setting, the social script is expressed in
restrictions on stage (physical location of the service), performance (service
offering), actors (service personnel), audience (customers), props (devices and
objects involved) and script (business process). This terminology should also
be used in the design of the user interface to create a clear connection be-
tween the technical authoring environment and a service marketing strategy
that adopts the same underlying dramaturgical theory so that it becomes a tool
that is conceptually integrated in a broader service management methodology.

Requirement UI.5 Overview of ambient intelligence fragment action
The timing and synchronization of device actions (Requirement R.4) de-
scribed in the ambient intelligence fragment should also be visualized in a
way that is easy to comprehend by end-users. Designers should be able to
navigate in this action timeline and preview the effects of these actions to deal
with complex timed media presentations with ambient effects. Commercial
DVD and Web authoring tools such as [Apple, 2008; Adobe, 2008] use a
similar way of visualizing timed media clips and actions to authors.

Requirement UI.6 Control over the activation of ambient intelligence frag-
ments
The authoring tool should allow designers to control the behavior of the am-
bient narrative on a number of levels (Requirement UI.6 to UI.8). First, the
designer should be able to set and edit restrictions on a social script. This
allows the designer to control the activation of an ambient intelligence frag-
ment.

3.4 Requirements analysis 57

Requirement UI.7 Control over the timing and synchronization of actions
in ambient intelligence fragments
If an ambient intelligence fragment is activated it should result in an effect
on the environment. To associate a media item, ambient effect or application
to a social script, the designer should be able to set and edit the timing and
synchronization of device actions.

Requirement UI.8 Control over the action content in ambient intelligence
fragments
Designers not only want to choose between predefined actions but also create
new actions. In the intelligent shop window scenario designer not only want
to choose between an attraction or interaction mode of an intelligent shop win-
dow application that runs on a device but also add new actions or change the
content. The product presentation slideshow for example needs to be updated
because certain products are no longer available or the style and presentation
must be changed to better reflect the store’s brand image. The authoring envi-
ronment should therefore provide support to control the content of actions in
ambient intelligence fragments.

3.4.4 End-user software engineering support requirements
The end-user software engineering requirements deal with controlling the life-
cycle of ambient narrative fragments by end-users such as testing, modifying
and versioning of ambient narratives (Requirements SE.1 to SE.5). Related
this support is the flexibility to program device actions and use new sensors
directly in the end-user programming environment (Requirements SE.6 and
SE.7).

Requirement SE.1 Simulation of the behavior of ambient narratives
The user feedback on the end-user programming strategies discussed in sec-
tion 3.2.2 showed designers and retailers liked the idea of having a 3D sim-
ulation of their store or a store concept they would be working on, both as a
design tool and as a communication tool. The authoring environment should
therefore support designers to test and present the behavior of their self-made
ambient narratives in a 3D simulation tool.

Requirement SE.2 Portability of ambient narratives
Because retail designers work both off-site and on-site and in an iterative way
(Insight 8) and use a variety of separate design methods, techniques and tools
(Insight 9) ambient narratives designed and tested in the off-site 3D simulation
should work on the on-site live system and vice-versa. This was confirmed

58 Eliciting Functional Retail Requirements

by the user feedback on the end-user programming strategies. Participants
mentioned they would use different strategies in combination (section 3.2.2).
This requires that the ambient intelligence fragments can easily be ported from
one authoring system to another.

Requirement SE.3 Versioning of ambient narratives
With end-user authoring support in place users can change the appearance of
their store more frequently in an easy and faster way (Insight 10). If design-
ers start to create new ambient intelligence fragments and ambient narratives
a possible versioning and maintenance problem can be created. A structured
process needs to be installed to ensure that someone is responsible for keep-
ing the smart retail environment up-to-date (Insight 6). The authoring envi-
ronment can support this process by giving designers the possibility to save
ambient narratives and give them a name or version number. This is particu-
larly relevant to larger retail chains that want to be able to centrally control the
behavior of individual shops. Ambient narratives can be uploaded to a central
Intranet site where they can be downloaded and used by the individual stores.
This requirement depends on SE.3.

Requirement SE.4 Modification of ambient narratives on location
Besides the 3D simulation environment for testing the behavior of an ambi-
ent narrative and communicating it to customers, the user feedback on the
end-user programming strategies discussed in section 3.2.2 also revealed that
retail designers would like to be able to modify an ambient narrative on loca-
tion using a portable device to finetune ambient effects such as light levels in
their shop (Insight 10) and be able to change the behavior of their store more
frequently (Insight 11).

Requirement SE.5 Debugging the behavior of ambient narratives
Professional software engineers spend much time debugging programs. Inte-
grated development environments (IDE) for managing software such as [Mi-
crosoft, 2008; Eclipse, 2008] provide their users the possibility to e.g. step
through the source code and inspect variables to quickly find and correct
errors. Similarly, an end-user authoring tool for smart retail environments
should offer designers support to detect and correct errors. Debugging support
is also provided through the visualization of the ambient narrative (Require-
ments UI.1 and UI.2) as this visualization helps to understand the current state
of the system and reason why a particular fragment is not active. Because we
learned that retail designers discover and correct errors through experience
(Insight 11), Requirement SE.4 can also be seen as a means of providing de-

3.5 Overview of requirements 59

bugging support.
The more functionality an authoring environment offers under control of

designers, the more complex user-made applications may become and the
larger the need for debugging support. This requirement therefore depends on
the expressiveness of the language model (AN.1 to AN.4 and RT.1 to RT.4)
and in particular which of this functionality is exposed to end-users in the
authoring tool (UI.6 to UI.8). Because the user-generated ambient narratives
we collected had little or no dependencies between fragments specified by the
participants and used relatively simple if-then rules, this requirement has a
lower priority than the other end-user authoring tool requirements.

Requirement SE.6 Support plug and write actuators
If a new actuator is connected to the system, it should not only be automat-
ically recognized by the system and used in ambient intelligence fragments
that define actions for this type of actuator (Requirement RT.8) but also ap-
pear in the authoring environment: Designers should be able to define new
or modified ambient intelligence fragments that use both these and already
present actuators in the smart retail environment to set context-aware actions.

Unlike the plug and play support for actuators that is needed to support
scenarios with portable devices that enter and leave an ambient narrative, the
authoring tool could be restarted after a new device is added. Run-time plug
and write support is therefore not necessarily needed.

Requirement SE.7 Support plug and write sensors
Similarly, if a new sensor is detected by the system, designers should be able
to define new or modified ambient intelligence fragments that take advantage
of this increased sensor coverage or functionality. Run-time plug and write
support in the authoring tool would be convenient but not necessary as in case
of Requirement SE.6.

3.5 Overview of requirements
Table 3.2 presents and prioritizes the functional requirements that will be
translated into formal system requirements which can be placed on a system
architecture. Requirements with a priority score of 1 must be fulfilled, re-
quirements with a lower score influence the quality of the final design but do
not invalidate this design in the author’s opinion (for argumentation we refer
to the specific requirement text above).

60 Eliciting Functional Retail Requirements

Requirement Priority
AN.1 Social scripts enhanced with ambient technology 1
AN.2 Mass customization of ambient narrative fragments 1
AN.3 Separation of ambience and intelligence by a network 1
AN.4 Run-time modification of ambient narrative fragments 1
RT.1 React on implicit context changes 1
RT.2 React on explicit user feedback 1
RT.3 React on state changes 1
RT.4 Timing and synchronization of actions over multiple devices 1
RT.5 No noticeable difference in performance with a custom-built system 1
RT.6 Scalable in terms of sensors and actuators 2
RT.7 Robust against sensor and actuator failures 2
RT.8 Plug and play actuators 3
RT.9 Plug and play sensors 3
UI.1 View summary of active and inactive ambient intelligence fragments 1
UI.2 View summary of current context situation 1
UI.3 Identication of ambient intelligence fragments 1
UI.4 Overview of ambient intelligence fragment situation 1
UI.5 Overview of ambient intelligence fragment action 1
UI.6 Control over the activation of ambient intelligence fragments 1
UI.7 Control over the timing and synchronization of actions in fragments 1
UI.8 Control over the action content in ambient intelligence fragments 1
SE.1 Simulation of the behavior of ambient narratives 1
SE.2 Portability of ambient narratives 1
SE.3 Versioning of ambient narratives 2
SE.4 Modification of ambient narratives on location 1
SE.5 Debugging the behavior of ambient narratives 2
SE.6 Plug and write actuators 3
SE.7 Plug and write sensors 3

Table 3.2: List of functional requirements

4
Modelling Smart Environments

In this chapter we analyze and translate the functional retail requirements
listed in section 3.5 into a formal description of the problem of reconstructing
ambient intelligence from modular fragments. This step is needed in order to
arrive at a machine readable representation of ambient narratives and a con-
crete working prototype system with authoring support that implements this
interaction concept.

The rest of this chapter is organized as follows: Section 4.1 provides the
definitions and notations that are used to formalize the problem and describe
the proposed solution. In sections 4.2 and 4.3 the formal model is constructed
based upon the elicited requirements for the special case of a static set of
fragments. Section 4.4 extends this formal model to include situations where
the set of fragments dynamically changes over time. We end this chapter with
a discussion of related work that intersects hypertext, interactive storytelling
and ambient intelligence.

4.1 Definitions and notations
We first introduce the elements and attributes of the ambient narrative lan-
guage model and provide formal descriptions of these elements and attributes.
We make a difference between the complete language model and a core lan-
guage model that implements a subset of the full language model which is

61

62 Modelling Smart Environments

easier to understand for designers and therefore simplifies the authoring en-
vironment. It is still sufficient to let designers recreate the intelligent shop
window scenario introduced in section 3.3.

Ambient intelligence is to be seen as a mass customized information prod-
uct that is delivered via the network through the collective user interface of
the devices that surround people (Requirements AN.2 and AN.3) (see also
discussion sections 4.5.1 and 4.5.2). We seek a declarative language model
that concentrates on specifying the desired context-aware behavior (the ‘in-
telligence’) and that leaves the actual rendering and implementation of this
behavior (‘ambience’ creation) to the individual devices and applications.

To model social scripts enhanced with ambient technology (Requirement
AN.1) there are two elements that need to be described: the social script (sit-
uation) and the ambient effects (action) that augment this performance. An
ambient intelligence fragment therefore consists of two parts, a situation de-
scription and an action description. The situation description can be a combi-
nation of physical context and narrative state restrictions (see also discussion
section 4.5.3). The action specifies the actions that must be rendered over the
devices(s) in the environment (see also discussion section 4.5.4).

Definition 4.1 (Beat)
A Beat b is a tuple < bid ,bcl,bke, pre,act > where bid is the name of the beat,
bcl is the group of beats this beat belongs to, bke is a sequence of words that
contains additional metadata set by the author, pre defines the Preconditions
of the beat, act defines the Action on the devices in the environment that is to
be executed when the preconditions of the beat hold.

To stay close to the dramaturgical theory of social life we use the term
beat from drama to refer to an ambient intelligence fragment. In drama and
film theory, a beat is an exchange of behaviour in action/reaction. Beat by
beat these changing behaviours shape the turning of a scene [McKee, 1997].
A sequence of beats results in a scene that can be defined as an action through
conflict in more or less continuous time and space that turns the value-charged
condition of a character’s life on at least one value with a degree of percep-
tible significance. [McKee, 1997]. In dramatic plays and stories, every scene
creates a meaningful change in the life situation of a character. To create
meaningful experiences story writers deliberately place characters in conflict
situations because these conflict situations force characters to make choices
that will reveal their true characters and create the meaning of the story. Not
all events in our everyday life seem dramatic, but a ‘good’ user scenario cre-
ated by an ambient intelligence designer typically has the form of a dramatic

4.1 Definitions and notations 63

story. This is clear for certain ambient narrative genres like the entertainment
examples of Chapter 2 but can also be seen in more functional ambient nar-
ratives. Consider the following example: The user puts white clothes in the
washing machine, but forgets there was a new red t-shirt in the set of clothes.
The intelligent washing machine detects the tag on the t-shirt and signals the
user to remove the t-shirt. The user removes the t-shirt. In this typical ambient
intelligence scenario a conflict situation is created (unwashed t-shirt in set of
clothes to be washed) that builds up to a climax (placed inside the washing
machine) but then suddenly the scene turns (the intelligent washing machine
recognizes the t-shirt) and leads to a conclusion (user removes the t-shirt). The
dramaturgical theory of social life will therefore be taken literally here.

The activation and deactivation of beats is not only controlled by setting
the preconditions of a beat, but also by event handlers or trigger objects that
can be set (added) or retracted (removed) in a trigger list (Definition 4.7).

Definition 4.2 (Trigger)
A Trigger t is a tuple < tid , tbe, pre, l > where tid is the identifier of the
trigger object, tbe ∈ (add,remove) defines the operation on the trigger list
and pre the preconditions that should be satisfied before the Link l is traversed.

A trigger is a context-aware link found in physical hypermedia systems
like e.g. [Hansen, Bouvin, Christensen & Grønbæk, 2004; Millard, Roure,
Michaelides & Thompson, 2004]. Similar to a beat each trigger has a pre-
conditions element (Definition 4.10). The trigger’s precondition describes the
social script that must be satisfied before the link element is traversed.

Definition 4.3 (Link)
Each Link l is a tuple < lid , lto, l f r > where lid is the identifier of the link
object, lto the addition beat query, l f r the removal beat query.

Each link object describes an operation on the set of beats that is currently
active. A link object can cause beats to be removed and/or added at the same
time to model complex operations on the set of active beats. All links in an
ambient narrative are context-dependent because any context situation that can
be expressed in the model is a situation that may cause a link to be traversed.

4.1.1 Ambient narrative
An ambient narrative can now be viewed as a graph consisting of nodes (beats)
and edges between these nodes (triggers). Because beat nodes are hierarchic
(tree-like structure), they can be represented as XML documents, as shown in

64 Modelling Smart Environments

Figure 4.1.
<beat id="id" ... >
<pre>

<stage id="stage" ... >
<performance id="performance" ... >
...
</performance>
</stage>

</pre>
<action>

<init> ... </init>
<main> ... </main>
<final> ... </final>

</action>
</beat>

Figure 4.1: Beat as XML document

Mass customization of ambient intelligence fragments (Requirement
AN.2) is supported by the beat and trigger concepts. By performing in the
environment, by interacting with the ambient narrative, actors cause beats to
become activated or deactivated by implicitly or explicitly traversing links be-
tween beats and this in turn will affect the actions that will be rendered over
the devices. We can use XPath path expressions [XPath, 2008] in the fol-
lowing to refer to navigation in those trees. The specification of which beats
should be added or removed in a link object is expressed by such an XPath
path expression: Figure 4.2 illustrates a link that will remove all beats in the
active set that are a members of the DEMO class with a walking performance
and add a single beat named DEMO1 to the set.
<link id="link123" to="//beat[@id=‘demo1’]"
from="//beat[@class=‘demo’]/pre/stage/performance[id=‘walking’]"/>

Figure 4.2: XPath path expressions in a link node

We are primarily interested in the interaction of an ambient narrative with
the environment over time. Before operations on ambient narratives can be
discussed in section 4.3 and 4.4 it is necessary to define the state of an ambient
narrative so that we can define operations on ambient narratives in terms of
state changes.

Definition 4.4 (Context)
The Context Ctx is defined as a list of Stage elements (Definition 4.11),
Ctx = (st1, ...,stn). Stage elements and their children have absolute values
derived from real-world sensors.

4.1 Definitions and notations 65

The state of an ambient narrative first of all depends on the state of the
physical environment. By performing, by acting out social scripts in the phys-
ical environment, people implicitly cause beats to be activated and deactived
that will in turn change the behavior of the electronic devices surrounding
them. Context is described by a list of stage elements with absolute sensor-
derived values in the child Condition (Definition 4.12) elements and attributes
for easy comparison of stage objects in beats and physical context.

Definition 4.5 (Story memory)
The Story memory Mem is the set of story values, Mem = (sv1, ...,svn) known
by the ambient narrative system.

The ambient narrative state is determined by session state. Explicit user
interaction with applications can result in session state variables referred to
as story values (Definition 4.20) being set or retracted. In addition, beats
themselves can modify story values to affect the beat sequencing process in
the action part of the beat. The story memory contains the current values of
these story values.

Definition 4.6(Beat set)
The Beat set B is the list of all Beat elements known by the ambient narrative
system, B = (b1, ...,bn).

The ambient narrative itself is a set of beats. In mass customization en-
vironments this beat set is fixed and defined in advance by the author of the
ambient narrative, in co-creation environments (Requirement AN.4) the set of
beats changes over time due to explicit interaction (e.g. using an authoring
tool) or implicit interaction (e.g. device action starts a software agent that
modifies this beat set).

Definition 4.7 (Trigger list)
The Trigger list T is the list of Trigger elements that are tracked by the
system, T = (t1, ..., tn). The set of beats associated to a trigger list TB is a
subset of the total beat set, TB ⊂ B.

The trigger list restricts the set of beats that can become active at any
time. Only the preconditions of the triggers in the trigger list will be checked.
If the preconditions of a trigger are satisfied, the corresponding link will be
traversed, resulting in beats that become activated and deactivated. The trigger
list acts as a filter on the beat set.

66 Modelling Smart Environments

Definition 4.8 (Active beat set)
The Active beat set AB is the subset of the Beat set that is currently active,
AB ⊂ B. The active beat set is a subset of the beats that can be triggered by
the trigger list, AB⊂ TB. TAB defines the triggers of the active beat set.

The beats that have been retrieved by links/queries and that satisfy the
current context and session state are stored in the active beat set. This active
beat set jointly determines the intelligent behavior of the electronic devices
that surround people in the ambient narrative environment.

Definition 4.9 (Ambient narrative)
The state of an ambient narrative an is described by the tuple
< Ctx,Mem,B,T,AB >.

The state of an ambient narrative can then be defined by the state of the
logical symbolic context (Definition 4.4), session state in the story memory
(4.5), beats in the beat set (4.6), trigger list (4.7) and beats in the active beat
set (4.8).

In the remainder of this section the formal definitions of the Precondition
and Action section of a beat are given.

4.1.2 Preconditions
The preconditions of a beat specify the restrictions placed on the social scripts
that are performed in the environment.

Definition 4.10 (Preconditions)
The Preconditions pre element contains the social script and consists of a
single Stage element s, pre = (s1).

As the ambient narrative system should be able to react to implicit con-
text changes (Requirement RT.1) specified in Table 3.1, explicit user feedback
(Requirement RT.2) and session state (Requirement RT.3), these requirements
should be reflected in the preconditions part of a beat. The more precisely
these restrictions can be formulated in the model, the more precisely an au-
thor can specify the event that triggers the action.

Definition 4.11 (Stage)
Each Stage s is a tuple < sid ,P,C, ti > where sid is the symbolic name of the
place where the social script is performed, P a set of Performance elements,
P = (p1, ..., pn), C a set of environmental Condition elements, C = (c1, ...,cn)

4.1 Definitions and notations 67

and ti a Time restriction element.

Because most social scripts are tied to a particular place and time, each
preconditions object has one stage object. If this stage object is completely
empty, there are no restrictions on activation. On a stage, zero or more ac-
tivities (performances) can take place at the same time. Examples of per-
formances are presence, walking, running, sleeping, driving. A stage does
not necessarily have to be identical to a physical location, a stage can extend
across several physical locations to support telepresence type of applications.
A stage can furthermore have a set of environmental condition restrictions and
restrictions set on the allowed time interval.

Definition 4.12 (Condition)
A Condition c is defined by the tuple < cid ,cval,cmin,cmax > where cid is
the name of the environmental condition, cval the current value, cmin is the
minimum allowed value and cmax is the maximum allowed value. Values are
in real numbers.

Environmental condition range restrictions are described by a name to
indicate the type of environmental condition (e.g. temperate, humidity) and a
minimum and maximum allowed value.

Definition 4.13 (Time)
A Time element ti is a tuple < tidt, timin−w, timax−w, timin−d , timax−d , timin−t ,
timax−t > where tidt is the current date and time 1, tiw is the current week
number, tid the current day number, tit current time, timin−w an integer
that defines the lowest allowed week number (between 1 and 52) in a year,
timax−w the highest allowed week number (between 1 and 52), timin−d the
first day (between 1 and 7) and timaxd the last day of a week between 1 and
7), timin−t the start time (HH:MM:SS), and timax−t the stop time (HH:MM:SS).

Some retailers change the collection four times a year, others every day
of the week. In the intelligent shop window scenario, after the shop is closed
a different set of beats could be active than during the day. To model these
situations, time interval restrictions are allowed on week number, day of the
week, and time of day.

1in (YYYY-MM-DDThh:mm:ss.sTZD) [W3C, 2008]

68 Modelling Smart Environments

Definition 4.14 (Performance)
Each Performance p is a tuple < pid , pcl, pdu, pno,A,Pr,sc > where Pid is the
name of the performance, Pcl is the class of performances this performance
belongs to, Pdu is the minimum duration of the performance (HH:MM:SS),
Pno a boolean value that tests on existence or non-existence, A a set of Actor
elements, A = (a1, ...,an), Pr a set of Prop elements, Pr = (pr1, ..., prn), sc a
Script element.

A performance typically involves one or more people (actors) and one
or more objects and devices (props). A shopper (actor) can for example be
standing (performance) in front of a shop window display (prop). An actor or
prop can be involved in several performances at the same time. For example,
an actor can be present in the same room with an object while at the same time
looking at another object.

Each performance may have a name (e.g. selecting item x from the shelf)
that can be part of a larger group (e.g. selecting an item from the shelf). An
author can set a restriction on the class of the performance to write only one
beat for a class of activity instances. An actor can also be performing a certain
activity for a period of time (e.g. standing still) before we want to trigger a
device action (e.g. product is highlighted). Finally there can also be situations
(e.g. shop closes) where we are interested in testing on the non-existence
of a performance (e.g. person inside). Besides restrictions on the (physical)
context situation, the system should also respond to explicit user feedback
(Requirement RT.2) and changes in session state (Requirement RT.3). The
author can use a script object to describe such situations (Definition 4.19).

Definition 4.15 (Actor)
An Actor a is defined by the tuple < aid ,aro,ano,amin−c,amax−c, po,o > where
(aid is the name of the actor, aro is the role of the actor in the performance,
ano is a boolean value that tests on existence or non-existence, amin−c is the
minimum number of actors allowed, amax−c is the maximum number of actors
allowed, po a Position element and o an Orientation element.

An actor is an entity that plays an active role in the social script and can
be a human in the role of a shopper or shop employee, for example, or an an-
imal in the role of a pet or a virtual agent that represents a real user. Authors
should be able to set restrictions on the name of the actor (e.g. John), its role
(e.g. shopper), whether the actor must be involved in this performance or not
(e.g. shopper not present in front of shop window) and what the minimum
and maximum number of allowed instances of this role of actors is in the per-

4.1 Definitions and notations 69

formance (groups). To describe restrictions on the position and orientation of
an actor or group of actors the author can use position and orientation objects
respectively.

Definition 4.16 (Prop)
Each Prop pr is a tuple < prid , prno, prmin−c, prmax−c, prca, po,o > where
(prid is the unique identifier of the prop, prno is a boolean value that tests
on existence or non-existence, prmin−c is the minimum number of props
allowed, prmax−c is the maximum number of props allowed, prca is the set of
capabilities of this device, po a Position element and o an Orientation element.

A prop is an entity that plays a passive role in the social script and is typi-
cally a device or object that is being used or consumed in the performance.
Props can be tangible objects such as items for sale in a shop or devices
that render actions. The devices associated with the device action commands
specified in the action part of a beat are logically also included as props in
the preconditions part of that beat. Authors should be able to set restrictions
on the identifier of the prop (e.g. SHOPWINDOWAPP1), its capabilities (e.g.
FLASHAPP), whether the prop must be involved in this performance or not,
and what the minimum and maximum number of allowed instances of this
type of props is (groups). To describe restrictions on the position and orien-
tation of a prop or group of props the author can use position and orientation
objects respectively.

Definition 4.17 (Position)
The tuple < poco, poanc, poanc−a, poanc−d , pomax−d , pomin−d , poang, poang−o,
Co > describes a Position element po. poco represents the coordinates of
the object. Coordinates are specified in a cartesian or spherical coordinate
system. poanc (anchor) refers to an Actor or Prop object identifier relative
to this object. poanc−a is the angle to the translated anchor point, poanc−d
is the distance to the translated anchor point, pomax−d is the maximum
allowed distance from the (translated) anchor point, pomin−d is the minimum
allowed distance from the (translated) anchor point, poang is the angle of the
(translated) anchor point, poang−o is the offset angle from the (translated)
anchor point and Co defines a set of polygon corner coordinates to mark an
absolute area. If absolute corner coordinates are set, all other attributes are
not used.

Restrictions on the position of actors and props can be absolute (e.g. ob-
ject must be within certain absolute coordinates) or relative to another actor or

70 Modelling Smart Environments

Figure 4.3: Restrictions on actor/prop positions

prop (e.g. object X should be at maximum two meters from object Y) and in
XYZ or GPS coordinates. Figure 4.3 visually illustrates position restrictions
that can be set. The gray area marks the area relative to the LCD panel where
an actor needs to be present. Instead of relative coordinates (left) the author
can also use absolute coordinates (right).

Definition 4.18 (Orientation)
Each Orientation o is a tuple < omax−x,omin−x,omax−y,omin−y,omax−z,omin−z >.
omax−x is the maximum allowed rotation around the x-axis (pitch), omin−x is
the minimum allowed rotation around the x-axis, omax−y and omin−y specify
the allowed interval allowed for the y-axis of rotation (roll), omax−z and omin−z

specify the allowed interval allowed for the z-axis (yaw).

The allowed orientation intervals of actors and props are specified in de-
grees and can be set for the x-axis (pitch), y-axis (roll) and z-axis (yaw).

Definition 4.19 (Script)
Each Script sc is a set of Story value elements, Sc = (sv1, ...,svn).

Each script object contains a number of story value objects. Story value
objects can be modified in the action part of a beat and checked in the precon-
dition part to test if certain beats are already active or not, for example, and
thereby support reasoning about session state (Requirement RT.3) . Applica-

4.1 Definitions and notations 71

tions activated through device action commands in the action part of a beat
may also send modified story values to the ambient narrative system, allowing
reasoning about user feedback (Requirement RT.2).

Definition 4.20 (Story value)
A Story value sv is a tuple < svac,Svid ,svva,svmin−v,svmax−v,svno > where
svac is the operation on the Story memory (svac ∈ (test,add,remove)), svid is
the name of the story value, svva is the current value of the story value, svmin−v

is the minimum allowed value, svmax−v is the maximum allowed value, svno

tests on the existence or non-existence.

Restrictions on story values can be set in the preconditions part to check
whether a particular story value is within/outside a certain interval. In the
action part of a beat the author of an ambient narrative can modify the story
memory (Definition 4.5) and change the current value of a story value. Both
actors and props may have scripts (profiles) with embedded story value name
and value pairs associated to them to indicate actor and prop preferences. As
soon as an actor or prop with a script is recognized by the system, the script is
parsed and the story values are inserted into story memory and from then on
influence the beat sequencing process.

4.1.3 Action
The action part of a beat describes the effect on the environment when all the
restrictions set on the social script in the preconditions part are satisfied.

Definition 4.21 (Action)
Each Action element act is a tuple (acty,acta,acpr, i,m, f) where acty is the
presentation markup language, acta is the machine address of the rendering
engine, acpr is a preview media element for visualization purposes, i is an Init
element, m is a Main element and f a Final element.

The action part consists of three subparts: The Init, Main and Final ele-
ments that contain device action commands to change the ambience and oper-
ations to modify the state of the ambient narrative. We designed a declarative
remote procedure call language (Definition 4.22) that allows the ambient nar-
rative author to specify timed actions on devices to deal with a variety of
devices with different capabilities and diverse applications running on those
devices (Requirement RT.4). Other declarative presentation language stan-
dards such as the Hypertext Markup Language [HTML, 2008] or Synchro-
nized Multimedia Integration Language [SMIL, 2008] may also be used to

72 Modelling Smart Environments

e.g. describe the layout of graphics and text or timing and synchronization of
media elements by setting the (acty attribute. Finally, the action element can
contain a preview image or media clip that shows a preview of the ambience
generated by the effect.

Definition 4.22 (Action script)
An Action script d is a simple presentation language markup that consists of
a tuple < did ,dbe,Da > where did is the identifier of the action script object,
dbe ∈ (add,remove,retract) is the behavior of the action script and Da a list
of Device action command elements, Da = (da1, ...,dan).

A set of device action commands is grouped in an action script object.
Each action script object has a unique name. A behavior attribute can be
used to add, remove and retract the script with the given name. In case of a
remove operation the script and all still scheduled device actions with it will
be retracted from the rendering engine. When the retract behavior is specified
all the devices that have already been set to a particular value will be set back
to their default value and the other device actions are canceled. If an action
script has, for example, already set four lamps to a red colour by the time the
script is retracted and three lamps are still scheduled to turn to a blue colour,
the device actions for the three lamps are canceled and the four red lamps will
be set to their default value (e.g. switched off).

Definition 4.23 (Device action command)
Each Device action command da is a tuple < dast ,dade,daac,dazo > where
dast is the start time of the action, dade is the symbolic name of the target
device, daac the value that is send to the target device at the specified start
time and dazo the z-order.

Each device action command is basically a remote procedure call on a
device. The procedure call itself is in the form of a string that is passed on
in a value attribute. The device action command provides an abstraction that
hides any device specific attributes. The result of this device action can be
that a lamp changes colour, a video clip starts on a projection display or that
a software application changes its state depending on the target device and
the specified value. A device action command can be executed immediately
after it has been forwarded to the rendering engine or with a delay to allow
for timed actions. The priority of the device action can be set with a z-order
attribute. If there are multiple device commands scheduled for one device, the
device command with the lowest z-order will be rendered in the background

4.1 Definitions and notations 73

and the one with the highest z-order on top. How this priority scheme is
implemented is left to the device itself (e.g. overriding behavior, overlaying
images on top of each other, mixing sounds with different volumes).

XPath path expressions can also be used to replace fixed device action
command values by a query on an action content database to support
customization of device actions based on context and session state and
personalization of action scripts. Figure 4.4, e.g., specifies a device action
command that contains a query for an image URL that has been created by
the actor on stage DESK2 in the context database. This XPath expression is
resolved in an image URL when the beat is initialized. The advantage of
using action script templates is that they require fewer beats to be written and
fewer triggers to keep track of.

<command start="+00:00:00" target="display1" z-order="1000"
value="//content[@type=‘image’ and
@author=‘//ctx/stage[@id=‘desk2’]/*/actor/@id]/@url]’"/>

Figure 4.4: XPath path expressions in a device action command node

Definition 4.24 (Init)
An Init I is an unordered list (Sv,T,d) where Sv is a set of Story value
elements, Sv = (sv1, ...,svn), T a set of Trigger elements, T = (t1, ..., tn) and
d a presentation language markup that is sent to the rendering engine for
interpretation.

The initialization or ‘init’ element of a beat action is executed immediately
after the beat has become active and before the main element is processed.
During this initialization step story values can be set or modified that affect
the beat sequencing process. For example a beat can set a story value dur-
ing initialization that is checked by another beat in its preconditions. In this
way authors can define dependencies between ambient narrative fragments.
In addition to setting story values (Definition 4.20), an initialization can set
triggers (Definition 4.2) to define context-dependent beat queries that affect
the beat sequencing process. Presentation markup specified in an ‘init’ object
is forwarded to the rendering engine for interpretation, but in most cases the
device actions will be specified in the main element.

74 Modelling Smart Environments

Definition 4.25 (Main)
Each Main element m is an unordered list (d) where d is a presentation
language markup that is sent to the rendering engine for interpretation.

The main part of a beat action is executed after the beat initialization has
been completed and contains presentation markup that will be sent to a render-
ing engine for interpretation. This rendering engine only controls the timing
and synchronization of actions, the actual rendering is left to the devices, anal-
ogous to a Web browser that provides a similar abstraction layer.

Definition 4.26 (Final)
A Final F is an unordered list (Sv,T,d) where Sv is a set of Story value
elements, Sv = (sv1, ...,svn), T a set of Trigger elements, T = (t1, ...tn) and
d a presentation language markup that is sent to the rendering engine for
interpretation.

The final element is processed when the preconditions of a currently active
beat are no longer satisfied and it therefore has been scheduled for removal.
The final part can be used to remove story values that are no longer used or
retract triggers that listen for events that are no longer of interest. To avoid
presentations from continuing to run after a beat has been removed, device
action commands in the presentation markup can be used to retract the script
and revert back to the default values of the devices (e.g. shop window display
mode is blanked) or overriding the behavior (e.g. by sending a ‘standby’
command to a device).

This completes the list of definitions and notations of the ambient narrative
language model.

4.1.4 Core language model
The more precisely an author can set restrictions on the activation of beats,
the more detailed situation descriptions can be formulated. This increased
functionality comes, however, at a cost. First, the system needs to keep track
of more situations that can take place in the environment (and trigger events)
which may reduce the system’s real-time performance. Second, the cogni-
tive load of the authoring environment on the user is increased. Third, certain
events are hard to detect (e.g. activity and emotion detection) and therefore
difficult to implement given the current state of the art in sensor technology.
For these reasons the functionality offered by the run-time and authoring en-
vironment of the intelligent shop window is a subset of the functionality that
can be expressed in the language model. This core language is sufficient to

4.1 Definitions and notations 75

let end-users describe and program the intelligent shop window scenario in
Section 3.3 while staying true to the ambient narrative concept. The design
decisions and implementation of the end-user programmable shop window
system are discussed in detail in Chapter 6.

Table 4.1 provides an overview of the introduced definitions and nota-
tions in the order they were presented and marks whether these definitions
are also part of the core language model that can be modified by the author-
ing environment. Lowercase symbols indicate individual elements, uppercase
symbols refer to sets of those elements. For attributes of the corresponding
elements we refer to the individual definitions.

symbol description core language?
b beat *
t trigger *
l link * (beat links only)
Ctx context *
Mem story memory *
B beat set *
T trigger set *
AB active beat set *
an state of ambient narrative *
pre preconditions *
s stage *
c condition interval
ti time interval
p performance * (presence detection only)
a actor * (aid ,aro,ano)
pr prop * (aid ,aca,ano)
po position * (absolute values only)
o orientation
sc script *
sv story value *
act action * (no action customization)
d action script *
da device action *
i init * (no action script)
m main *
f final * (no triggers)

Table 4.1: List of definitions and notations

In the preconditions part, condition, orientation and time interval elements
are excluded because environmental sensor input data, orientation of objects
and date and time of day are not used in the intelligent shop window sce-

76 Modelling Smart Environments

nario. Furthermore, we limit ourselves to presence detection of people and
objects in certain areas. For actors, end-user tests are allowed on name, role
and presence attributes, for props on their unique id, capability and presence
attributes. In terms of position restrictions authors can specify absolute stages
and indicate the presence and/or absence of actors and/or props.

In the action part of a beat the core language model does not allow authors
to place action scripts in beat initialization section and define trigger list op-
erations in the main and final sections of a beat. Customized device actions
(XPath expressions in device action values) are also not included in the core
language model.

4.2 Precondition checking
To determine whether all the restrictions set on the social script in the precon-
dition part of a beat or trigger are satisfied, its precondition fragment has to be
matched against the current context. Formally, this problem can be stated as a
subtree matching problem. Subtree matching is the problem of finding all the
matching occurrences of a pattern tree in a subject tree as a subtree [Cserkuti,
Levendovszky & Charaf, 2006]; in this case the precondition fragment is the
pattern tree, the context the subject tree.

To distinguish between context and precondition trees we use the super-
script c for context and p for precondition nodes. Subscripts refer to attributes,
e.g. ap

id refers to the id attribute of an actor node a as part of the precondi-
tion p. XPath path expressions are used for node tests, e.g. sp/pp refers to
a performance node that is a child of a stage node, both in the precondition
tree. XPath path expressions may also be used as alternative syntax to select
attributes, e.g. ap/@id refer to the id attribute of an actor node a as part of
the precondition p (ap

id ≡ ap/@id).
Each precondition tree pre has a stage child node with a specific id at-

tribute. The value of this id attribute must occur in at least one of the stage
nodes of the context tree ctx to satisfy the stage test, StageTest(pre,ctx):

sp ∈ pre/s⇒∃sc ∈ ctx/s∧SC(sp,sc) (4.2.1)

The stage check of two stage nodes can be defined as follows:

SC(sp,sc) =

{
1, if sp

id = sc
id

0, otherwise

If a precondition tree contains a time restriction on a particular stage,

4.2 Precondition checking 77

there should be a time node in the context tree that satisfies the time test,
TimeTest(pre,ctx):

sp/tip ∈ pre/s⇒∃sc/tic ∈ ctx/s∧TC(tip, tic) (4.2.2)

The comparison of two time nodes is described by:

TC(tip, tic) =



1, if tip
min−w ≤ week(tidt)≤ tip

max−w∧
tip

min−d ≤ day(tidt)≤ tip
max−d∧

tip
min−t ≤ time(tidt)≤ tip

max−t

1, if tip = /0

0, otherwise

If a precondition tree contains an environmental condition restriction on
a particular stage, there should be a condition node in the context tree that
satisfies the condition test (ConditionTest(pre,ctx)):

sp/cp ∈ pre/s⇒∃sc/cc ∈ ctx/s∧CC(cp,cc) (4.2.3)

The comparison of two condition nodes can be defined as follows:

CC(cp,cc) =

{
1, if cp

min ≤ cc
val ≤ cp

max

0, otherwise

A context tree needs to satisfy the performance test for all performance
restriction nodes set in the precondition tree, Per f ormanceTest(pre,ctx):

sp/pp ∈ pre/s⇒∃sc/pc ∈ ctx/s∧PC(pp, pc) (4.2.4)

The comparison of two performance nodes is defined as follows (if pp
no

not defined use pp
no = 0):

PC(pp, pc) =


pp

no⊕1, if (pp
cl = pc

cl ∨ pp
c l = /0)∧

(pp
id = pc

id ∨ pp
id = /0)∧

(pp
dur ≤ pc

dur)
pp

no⊕0, otherwise

If a precondition tree contains an actor restriction node as child of a stage
and performance node, there should be an actor node in the context tree that

78 Modelling Smart Environments

satisfies the actor test, ActorTest(pre,ctx):

∀sp/pp ∈ pre/s⇒∃sc/pc ∈ ctx/s∧AC(pp, pc) (4.2.5)

The comparison of two actor nodes is defined as follows (if ap
no not defined

use ap
no = 0):

AC(pp, pc) =

{
ap

no⊕1, if ∀ap ∈ actor(pp) : ARC(pp, pc)∧AIC(pp, pc)
ap

no⊕0, otherwise

The number of actors in a particular role in the context tree should be
within the minimum and maximum set values in the precondition tree (Ax =
pp/a[@ro =′ x′]):

ARC(pp, pc) =∀x ∈ Ax :

∑
amin∈Ax

amin ≤| pc/a[@ro =′ x′] |≤ ∑
amax∈Ax

amax

Names of actors specified in the preconditions should also exist in the
context:

AIC(pp, pc) = ∀ap
id ∈ pp

A∃a
c
id ∈ pc

A : ap
id = ac

id

If a precondition tree contains a prop restriction node as child of a stage
and performance node, there should be a prop node in the context tree that
satisfies the prop test, PropTest(pre,ctx):

∀sp/pp ∈ pre/s⇒∃sc/pc ∈ ctx/s∧PrC(pp, pc) (4.2.6)

The comparison of two prop nodes is similar to the actor node comparison
and can be defined as follows ((prp

no = 1 if prp
no = /0):

PrC(pp, pc) =


prp

no⊕1, if ∀prp ∈ prop(pp) :
PrRC(prp, prc)∧PrIC(prp, prc)

prp
no⊕0, otherwise

The number of props with a particular capability should be within the
minimum and maximum set values for that capability (Prx = pp/pr[@cap =
contains(′x′)]):

4.2 Precondition checking 79

PrRC(pp, pc) =∀x ∈ pp/pr[@cap = contains(′x′)] :

∑
prmin∈Prx

≤| pc/pr[@cap = contains(′x′)] |≤ ∑
prmax∈Prx

prmax

Names of props specified in the precondition tree should also exist in the
context tree.

PrIC(pp, pc) = ∀prp
id ∈ pp

Pr∃prc
id ∈ pc

Pr : prp
id = prc

id

If a precondition tree contains an orientation node, there must be a match-
ing orientation node in the context tree, OrientationTest(pre,ctx):

∀sp/pp/ap ∈ pre/s⇒∃sc/pc/ac ∈ ctx/s∧OC(ap
o ,ac

o)
∀sp/pp/prp ∈ pre/s⇒∃sc/pc/prc ∈ ctx/s∧OC(prp

o , prc
o) (4.2.7)

The values for rotation around the x-axis (pitch), y-axis (roll), and z-axis
(yaw) in the context orientation node must be within the specified intervals by
the precondition orientation node.

OC(op,oc) =



1, if op
min−x ≤ oc

val−x ≤ op
max−x∧

op
min−y ≤ oc

val−y ≤ op
max−y∧

op
min−z ≤ oc

val−z ≤ op
max−z

1, if op = /0

0, otherwise

If a precondition tree contains a position node, there must be a matching
position node in the context tree, PositionTest(pre,ctx):

∀sp/pp/ap ∈ pre/s⇒∃sc/pc/ac ∈ ctx/s∧POC(ap
po,a

c
po)

∀sp/pp/prp ∈ pre/s⇒∃sc/pc/prc ∈ ctx/s∧POC(prp
po, prc

po) (4.2.8)

pop can be an absolute or relative restriction on the position of an actor
or prop. If pop is absolute, the position (coordinates) of the object in the
preconditions must be exactly the same as the current value for that object
in the context tree. If pop is relative, the current position of that object in
the context tree must be contained by the area specified by pop. poc can be
absolute or relative. A relative context position introduces uncertainty in the
exact position of a sensed object and therefore leads to an inclusive answer

80 Modelling Smart Environments

as to whether the sensed object is in inside the area specified by a relative
precondition position unless the relative context position is fully inside the
relative precondition position.

POC(pop, poc) =

{
1, if inside(pop, poc)
0, otherwise

Definition 4.27 (Precondition context valid)
The context constraints in a precondition tree are met, ContextCheck(pre,ctx),
if constraints 4.2.1, 4.2.2, 4.2.3, 4.2.4, 4.2.5, 4.2.6, 4.2.7 and 4.2.8 are all
satisfied.

Next to restrictions on the physical context, a precondition tree can also set
constraints on story values to react on the internal session state of an ambient
narrative. All story value restrictions in a precondition tree must be satisfied
in the story memory:

∀sv ∈ pre/∗/sc⇒∃m ∈Mem : svid = mid ∧SVC(sv,m) (4.2.9)

The comparison of two story values is defined as follows ((svno = 1 if
svno = /0:

SVC(sv,m) =

{
svno⊕1, if svmin ≤ mval ≤ svmax

svno⊕0, otherwise

Definition 4.28 (Precondition story values valid)
The story value constraints in a precondition tree are met,
StoryMemoryCheck(pre,mem), if constraint 4.2.9 is satisfied.

Definition 4.29 (Preconditions valid)
The preconditions of a beat or trigger are satisfied if both con-
text and story value constraints are met: PreCheck(pre,ctx,mem) =
ContextCheck(pre,ctx)∧StoryMemoryCheck(pre,mem).

4.3 Beat sequencing
At any moment in time, the state of an ambient narrative an is described by
the tuple (Ctx,Mem,B,AB,T) (Definition 4.9). However, after each change in
physical context (Ctx→Ctx′) or change in session state (Mem→Mem′) the
state of the ambient narrative needs to be updated (an→ an′). This problem
that we will refer to as beat sequencing will be defined in a formal way next

4.3 Beat sequencing 81

and is implemented by the ambient narrative engine that manages the state
of the ambient narrative and controls the distribution of action scripts to the
rendering engine (Chapter 6).

The set of active beats and trigger list remains unchanged
(Ctx,Mem,B,AB,T) → (Ctx′,Mem′,B,AB,T) if the preconditions of all
active beats are still valid and no new triggers are activated after a change in
physical context or session state:

∀b ∈ AB : PreCheck(b/pre,Ctx′,Mem′) (4.3.1)

∀t ∈ T \TAB : ¬PreCheck(t/pre,Ctx′,Mem′) (4.3.2)

(Ctx,Mem,B,AB,T)→ (Ctx′,Mem′,B,AB′,T ′) if one or more of the pre-
conditions tests of an active beat no longer hold or if a new trigger is activated:

∃b ∈ AB : ¬PreCheck(b/pre,Ctx′,Mem′) (4.3.3)

∃t ∈ T, t /∈ TAB : PreCheck(t/pre,Ctx′,Mem′) (4.3.4)

If the precondition test of one of the active beats fails (Rule 4.3.3 is sat-
isfied), the beat should be removed from the active beat set and checked for
story memory, trigger list operations and action script that must be sent to the
rendering engine (REMOVEACTIVEBEAT rule):

REMOVEACTIVEBEAT

b,AB,Mem,Ctx,T sc ∈ b/∗/ f inal/sc sv ∈ b/∗/ f inal/sv
t ∈ b/∗/ f inal/t ∃b ∈ AB : ¬PreCheck(b/pre,Ctx,Mem)
U pdateStoryMemory(sv,Mem) U pdateTriggerList(t,T)

SendActionScript(sc) AB′ = AB\b

If a new trigger is activated (condition 4.3.3 is true), the link must be
traversed (LINKTRAVERSAL). XPath queries in the link should be executed
on the beat set and the results added to or removed from the active beat set
depending on the link attribute in the following way:

LINKTRAVERSAL

AB,Mem,Ctx,T ∃t ∈ T, t /∈ TAB : PreCheck(t/pre,Ctx,Mem)
∀b ∈ t/l f r(B) : RemoveActiveBeat(b,AB)
∀b ∈ t/lto(B) : AddActiveBeat(b,AB)

The add beat operation (ADDACTIVEBEAT) adds a new beat to the active
beat set and checks for story memory, trigger list operations and action script
that must be sent to the rendering engine:

ADDACTIVEBEAT

82 Modelling Smart Environments

b,AB,Mem,Ctx,T sv ∈ b/∗/init/sv
t ∈ b/∗/init/t sc ∈ b/∗/init/sc PreCheck(b/pre,Ctx,Mem)

U pdateStoryMemory(sv,Mem) U pdateTriggerList(t,T)
SendActionScript(sc) SendActionScript(b/∗/main/sc)

AB′ = AB∪b

The update trigger list operation (UPDATETRIGGERLIST) adds or deletes
a trigger in the trigger list depending on the trigger action:

UPDATETRIGGERLIST

t,T

tac = ‘remove′ : T ′ = T \ t tac = ‘add′ : T ′ = T ∪ t

The update story memory operation (UPDATESTORYMEMORY) adds or
deletes a story value in the story memory depending on the story value action:

UPDATESTORYMEMORY

sv,Mem

svac = ‘remove′ : RemoveStoryValue(sv,Mem)
svac = ‘add′ : AddStoryValue(sv,Mem)

The add story value operation (ADDSTORYVALUE) is formally defined
by:

ADDSTORYVALUE

sv,Mem

∃m ∈Mem,mid = svid : m′val = mval + svval ∧Mem′ = Mem\m∪m′

¬∃m ∈Mem,mid = svid : Mem′ = Mem∪ sv

The remove story value operation (REMOVESTORYVALUE) can be de-
scribed by:

REMOVESTORYVALUE

sv,Mem

∃m ∈Mem,mid = svid : Mem′ = Mem\m

The send action script operation SendActionScript sends the specified ac-
tion script to the rendering engine that controls the timing and synchronization
of actions over the distributed devices. The device actions specified in the ac-
tion script are allowed to influence the beat sequencing process by sending the
result of their action or other important events as a story value change back
to the ambient narrative engine via the rendering engine to influence the beat

4.3 Beat sequencing 83

sequencing process. The downside of using story value commands embed-
ded in device actions is that they are outside the specification of the ambient
narrative and therefore make it difficult to trace errors. To circumvent this
problem an author may choose to break a complex beat down into smaller
simpler beats with more detailed preconditions and story value commands in
the ‘init’ or ‘final’ section of these beats. The rendering engine is discussed in
section 6.2.3.

After a RemoveActiveBeat or AddActiveBeat operation has been com-
pleted, rules 4.3.3 and 4.3.4 need to be reevaluated as the story memory and/or
trigger list may have changed which can cause active beats to become invalid
and new triggers to be activated. This process repeats until conditions 4.3.1
and 4.3.2 are both satisfied. A single change in context or story memory can
therefore cause a whole chain of effects. We refer to a single iteration as a
beat sequencing cycle.

Ordering
The order in which story values and triggers are set or retracted may influence
the beat sequencing process. For example if in an ‘init’ or ‘final’ part of a
beat, two story values have the same id and different actions, the sequence in
which the story value changes are processed will determine the outcome. To
prevent this we specify the following constraint (analogous for final):

∀sv ∈ b/∗/init/sv⇒¬∃x ∈ b/∗/init/sv : svid = xid (4.3.5)

For triggers a similar rule applies (analogous for final):

∀t ∈ b/∗/init/t⇒¬∃y ∈ b/∗/init/t : tid = yid (4.3.6)

The order of the modifications on the active beat set can also affect the
outcome of the beat sequencing process. If Tm is the set of triggers that is
produced by the list of modifications on the active beat set and SVm is the set
of story values produced by this list, then constraint 4.3.5 and 4.3.6 need to be
generalized to (4.3.7) to prevent this from happening during a beat sequence
cycle.

∀sv ∈ SVm⇒¬∃x ∈ SVm : svid = xid

∀t ∈ Tm⇒¬∃y ∈ Tm : tid = yid (4.3.7)

84 Modelling Smart Environments

4.3.1 Example beat sequences
The combination of setting and retracting triggers and story values in beats
can be used to create complex dynamic behavior in ambient narratives. To
illustrate it is useful to look at some example beat sequences.

(b0,b1)
mem:−sv1+sv2,l:−b1,+b2−→ (b0,b2)

mem:−sv2,l:−b2,+b3−→ (b0,b3) (4.3.8)

Sequence 4.3.8 represents a workflow scenario where three tasks
(b1,b2,b3) need to be performed in sequence. The active beat set starts with
b1 in the set. b1 has a beat preconditions test on the existence of story value
’sv1’ and b1 sets a story value ’sv2’ during initialization and a trigger that tests
on the non-existence of story value ’sv1’, which triggers a link that causes b1
to be removed and b2 to be added. b2 tests on the existence of story value
’sv2’. If a device action of b1 now causes the story value ’sv1’ to be retracted,
the trigger will fire and b1 will be removed and b2 added. b2 has a beat pre-
conditions test on the existence of story value ’sv2’ and b2 sets a story value
’sv3’ during initialization and a trigger that tests on the non-existence of story
value ’sv1’, which will then trigger a link that causes b2 to be removed and b3
to be added. b3 tests on the existence of story value ’sv2’. If a device action
of b2 now causes the story value ’sv2’ to be retracted, the trigger will fire and
b2 will be removed and b3 added.

(b0,b3,b4)
ctx:−time1,l:−b3,−b4−→ (b0) (4.3.9)

Sequence 4.3.9 presents a scenario where a task stops two beats after a pe-
riod of time. The active beat set starts with b3 and b4 in the set, both triggered
through b0. Both b3 and b4 do not have a time test, but b0 has set a trigger with
a precondition containing a time test that will cause b3 and b4 to be stopped if
satisfied. If the context now changes and the time test is satisfied, the link is
traversed and b3 and b4 are removed.

(b0,b5)
ctx:−actor1,l:+b6−→ (b0,b5,b6)

mem:−sv6,l:−b6,+b7,+b8,+b9−→ (b0,b5,b7,b8,b9)
(4.3.10)

Sequence 4.3.10 illustrates a scenario where after a certain period of inac-
tivity three new tasks are started. In this case one of the beats in the active beat
set has set a trigger whose link will be traversed if an actor ’actor1’ removes
himself from the stage. In that case a beat b6 is started that will set a trigger
that will cause beats b7,b8,b9 to activate if the story value ’sv6’ is active. Af-
ter a period of time, this beat removes itself by retracting story value ’sv6’ in

4.3 Beat sequencing 85

its final part.

(b0,b1)
ctx:+prop1,l:−b1+b2−→ (b0,b2)

ctx:+prop1,l:−b2,+b1−→ (b0,b1) (4.3.11)

Sequences can also repeat themselves, 4.3.11 presents a scenario that will
continue to cycle b1,b2,b1,b2, ... until prop ’prop1’ is removed from the stage.

(b0,b1)
t1=1−→ (b0,b2,b3,b4)

t2=2−→ (b0,b2) (4.3.12)

In a single user environment or any other monotasking situation, beat se-
quences will typically take place after each other. In multi-user scenarios, M
actors may involved in N performances simultaneously leading to more com-
plex operations on the active beat set. Sequences 4.3.8 and 4.3.9 may partially
overlap or be contained in each other as shown in 4.3.12 for example.

Sequences may also mutually influence each other, e.g. sequence 4.3.8
could retract a story value ’sv6’ and in that case immediately cause beats
b7,b8,b9 to be added in sequence 4.3.10.

Mutually overlapping and interacting performances cannot be eliminated
because they are part of everyday life; but make programming of ambient in-
telligent environments complex because the author has to take a holistic view
that considers all user scenarios at the same time and their interactions. A
number of techniques however can be employed to deal with this race condi-
tion ‘problem’:

� Precise preconditions: The more context tests are specified in a pre-
condition, the less chance two unrelated beats will affect each other in
unexpected ways. In the shop window scenario example beats specify
all the props they need. If a device is then switched off, the beat will
not be activated.

� Keep the size of the trigger list and story memory small: Triggers and
story values that are no longer needed, may still activate links or affect
the beat sequencing process. The larger the number of story values in
memory, the more chance of influencing the beat sequencing process.

� Story value for each active beat: Each beat can set a story value that
represents its name in its init part that is again retracted in its final part.
This way each beat can test on the existence or non-existence of other
beats. In small ambient narratives, the author can then simply state
which other beats may or may not be active for a given beat.

86 Modelling Smart Environments

4.4 Run-time authoring
During the beat sequencing process, the trigger list and/or active beat set may
change as a result of context and/or story memory changes but the beat set
itself remains fixed. In this section we formalize the problem of modifying
the beat set at run-time to address our requirement of run-time modification
of ambient intelligence fragments (Requirement A.4) for co-creation environ-
ments (see also discussion section 4.5.5). This problem can be viewed as
follows: Given a change in beat set (B→ B′) determine the next state of the
ambient narrative (an→ an′).

A beat set change requires at least two modifications: A trigger that is
added/removed in an (existing) source beat, bs in the beat set and a target
beat, bt that is added to or removed from the beat set.

In case of an add operation, there should be at least one source beat in the
new beat set with a trigger that has a link with a ’to’ query that can return the
target beat:

∃b,bt ∈ B,b/∗/l⇒ b 6= bt ∧bt ∈ lto(B) (4.4.1)

Rule 4.4.1 can temporarily be relaxed if an author decides to add a set of
new target beats that are activated through a single source trigger for example.
The author first adds the new target beats to the ambient narrative. The new
beats are then unreachable from other beats. The author can make these beats
reachable by adding a trigger to an existing source beat that can cause these
beats to be activated.

When a new beat has been added to the beat set and constraint 4.4.1 is
met, it is necessary to check whether the source beat is currently active or not.
If the source beat is not part of the active beat set, no action has to be taken
other than modifying the beat set, but if the source beat is active, the trigger
list and active beat set have to be updated and checked for activation unless
the trigger is in the final part of the source beat.

ADDBEAT

bt ,bs,b′s, t
′
s,B,T b′s/∗/l⇒ b′s 6= bt ∧bt ∈ b′s/∗/lto(B)

B′ = B∪bt \bs∪b′s
bs ∈ AB : AB′ = AB\bs∪b′s, t

′
s ∈ b′s/action/init/t : U pdateTriggerList(t ′s,T)

In case of a remove operation, there should be no triggers left in the mod-
ified beat set that have a ’fr’ or ’to’ query in the beat set that only returns the
(removed) target beat in order to prevent broken links.

4.5 Discussion 87

∀b,bt ∈ B′,¬∃b/∗/l⇒
(bt ∈ l f r(B)∧ | l f r(B) |= 1)∧ (bt ∈ lto(B)∧ | lto(B) |= 1) (4.4.2)

The beat removal operation of a source beat, bs and target beat, bt can then
formally be described by the REMOVEBEAT rule. If both the source and target
beat are not present in the active beat set, only the beat set has to be updated.
If the source beat is present in the active beat set, the trigger list needs to be
updated and the active beat set modified with the new value for the source
beat. If the target beat is also present in the active beat set, the target beat
must be removed from the active beat set.

REMOVEBEAT

bt ,bs,b′s,B,T
¬∃l ∈ b′s/∗/l⇒ (bt ∈ l f r(B)∧ | l f r(B) |= 1)∧ (bt ∈ lto(B)∧ | lto(B) |= 1)

B′ = B\bt \bs∪b′s
bs ∈ AB : t ′s ∈ b′s/action/init/t : U pdateTriggerList(t ′s,T),AB′ = AB\bs∪b′s

bt ∈ AB : RemoveActiveBeat(b,AB)

Modifying an existing beat in the beat set can be seen as a REMOVEBEAT

operation followed by a ADDBEAT operation.

4.5 Discussion
This section compares the formalized ambient narrative model introduced in
the previous sections with earlier work in hypertext, interactive storytelling
and mixed reality applications. The goal of this section is to reflect back on the
choices and decisions that were taken to meet each of the functional ambient
narrative concept requirements and indicate what the inspirations were for the
formal model and why existing solutions were insufficient for our purpose.

4.5.1 Separation of ambience and intelligence by a network
To view ambient intelligence as an information product or service that is de-
livered to the devices surrounding the user we need to make a distinction be-
tween the device action that is rendered and how this device action is ren-
dered. This separation is common in hypertext systems and is therefore also
adopted here. We can map the ambient narrative model on the Dexter hyper-
text reference model [Halasz & Schwartz, 1994]. This mapping helps to un-
derstand how beats and the presentation descriptions inside the action section
of a beat relate. From the point of view of the ambient narrative engine that se-
quences/reads beats (run-time layer), these beats (Definition 4.1) correspond

88 Modelling Smart Environments

to the components in the Dexter storage layer, whereas the triggers (Definition
4.2) refer to links in the Dexter model. The presentation markup inside the ac-
tion (Definition 4.21) section of a beat is part of the within-component layer
because it is not further interpreted. However, if we consider the rendering
engine that interprets this presentation markup, this markup is the presenta-
tion specification between the run-time and storage layer. The advantage of
this approach is that we can use different Dexter-based presentation systems
for rendering presentation descriptions in concert.

Figure 4.5: Story graphs, drama management and generative drama

Figure 4.5 shows how beat sequencing and run-time authoring can be re-
lated to different forms of hypertext. During beat sequencing (drama man-
agement) the nodes in the story graph are fixed but the traversal of links is
context-dependent and by setting and retracting triggers, links can be enabled
or disabled at run-time. In the case of run-time authoring, the nodes are also
modified dynamically. This form of authoring can be seen in the form of
social hypertext on the Web [Erickson, 1996] in many ways (e.g. weblogs,
social networking sites). [Güven & Feiner, 2003] is an example of a physical
hypermedia system that creates location-based hypermedia narratives before
the real-world experience has taken place, [Weal, Michaelides, Thompson &
DeRoure, 2003] of modification after the real-world experience has happened.
An example of run-time modification of mobile context-aware hypermedia is
presented in [Hansen, Bouvin, Christensen & Grønbæk, 2004]. The authors
that add and remove beats in an ambient narrative could be (remote) human
actors but also software agents as suggested by e.g. [Bleeker, 2006]. The ad-
vantage of computer actors is that the author of the ambient narrative does not
have to explicitly encode all media-enhanced social scripts manually. It also
allows more variation and surprise in the behavior of the intelligent environ-
ment. This automatic on-line generation of beats is referred to as generative
drama by [Mateas & Stern, 2003].

4.5 Discussion 89

4.5.2 Mass customization of ambient narrative fragments
The key requirement for the ambient narrative model is that the application
intelligence can be broken down into modular fragments that are reassem-
bled based on user interaction into a coherent story or ambient intelligent
experience. This idea is also used in interactive drama approaches [Laurel,
1986; Bates, Loyall & Reilly, 1991; Perlin & Goldberg, 1996; Magerko, 2002;
Mateas & Stern, 2003] and the ambient narrative model has been inspired by
this work. [Laurel, 1986] is the first to describe a (hypothetical) drama man-
ager that guides an interactive story experience. This drama manager would
sequence story fragments into a coherent narrative based on the choices of the
reader in the fantasy world. The Oz project [Bates, Loyall & Reilly, 1991]
at CMU and the Improv project [Perlin & Goldberg, 1996] at MIT are early
examples of interactive drama systems that implement a drama manager that
influences the virtual character’s minds, the virtual world in which they live
and the user interface through which the user sees the virtual world and is
allowed to interact with this virtual world. More recently, [Mateas & Stern,
2003; Szilas, 2003] have demonstrated interactive storytelling systems with
a central drama manager that orchestrates the action. The ambient narrative
model was inspired by this Façade system in several ways: Mateas and Stern
refer to their atomic story fragments as beats and introduce a drama man-
ager that sequences beats from a bag of beats based on explicit and implicit
feedback from the story world and a story memory. The selected beat affects
the story world and the choices the virtual characters in the story world can
take. The actions of the virtual characters in turn influence the beat sequenc-
ing process. A human player is also viewed as a character in the story; explicit
feedback of the user will cause story values (specified in the beat) to change
that will in turn affect the beat sequencing process. Furthermore Mateas and
Stern define A Behavioral Language (ABL) that lets authors write parallel,
sequential and joint behaviors to create believable agents with (sub)goals and
behaviors. An activity (e.g. walking to the player) is represented as a goal, and
each goal is supplied with one or more behaviors to accomplish its task. The
notion of goals is not present in the ambient narrative model, but goals can
be set by using the story memory and introducing beats that test on this value
(goal completion). The device action command corresponds with the behav-
iors in ABL. Like the preconditions in the ambient narrative model, the Beat
Sequence Language developed for Façade allows the author to annotate each
beat with selection knowledge. The ‘init’, ‘main’ and ‘final’ section in the am-
bient narrative model are inspired by the possibility in Façade to set actions
that need to be performed at various stages in the beat selection process. [Dow,

90 Modelling Smart Environments

Mehta, Harmon, MacIntyre & Mateas, 2007] describes experiments with an
augmented reality version of the Façade system [Mateas & Stern, 2003] but
apart from the location of the player in the real world (which is used to in-
fluence the story) this version seems identical to the original version except
for a head-up display instead of a computer screen. Magerko’s IDA architec-
ture [Magerko, 2002] is another example. It represents plots at the scene level
and consists of five stages: initial state, required events, background knowl-
edge, content constraints and temporal constraints. The initial state sets up the
scene and is similar to the initialization part in our action stage. The required
events and background knowledge are comparable with beat preconditions in
the ambient narrative model, while the content constraints that limit the bind-
ing of the variables used in the required events refer to device action command
templates. Like Façade, the IDA architecture has been designed with screen-
based interactive storytelling in mind and therefore needs to be extended to
support timing and synchronization of device actions and aggregation of sen-
sor data from different sources. Furthermore, these interactive storytelling
systems assume an author who has sufficient programming skills to write the
parallel behaviors and behavior mixing and therefore do not discuss run-time
modification of beats by end-users.

Reassembly of ambient narrative fragments through performance in the
real world can be seen as browsing. Triggers (Definition 4.2) in the ambient
narrative model correspond with the notion of context-aware links that are im-
plicitly traversed based on user’s actions. An example is the HyCon system
[Hansen, Bouvin, Christensen & Grønbæk, 2004]. Using the HyConExplorer
users can create links, annotations, and trails of links which are automati-
cally tagged with context information sensed from the physical environment.
When the user moves about in the physical world, hypermedia structures are
presented to the user, if the user’s context matches that of the structures: A
mobile client captures the contextual information from the physical environ-
ment and sends it to a server that returns the relevant hypermedia structures.
The trigger precondition and link in the ambient narrative model are similar to
the annotation and link in HyCon. [Millard, Roure, Michaelides & Thompson,
2004] explores how various navigational models and link structures can cope
with mixed reality scenarios. The trigger precondition and link in the ambi-
ent narrative language model corresponds with the source and traversal infor-
mation (that describes how to get from source to destination) in the FOHM
model. During the beat sequencing process the context (Definition 4.4) and
story memory (Definition 4.5) determine whether certain context-aware links
will be traversed. Our beat sequencing approach can therefore also be com-
pared with the mass customization process taking place in an adaptive hyper-

4.5 Discussion 91

text [Brusilovsky, 1996; De Bra, Houben & Wu, 1999] system that guides the
navigation through a hypertext graph based on a model of the user and the
environment.

Viewing physical performance in ambient intelligence environments as
browsing differs from browsing a hypermedia document on an augmented re-
ality or mobile context-aware application display in several ways. Since there
are multiple users performing in an ambient narrative at the same time, mul-
tiple paths in the graph can be traversed simultaneously by different readers.
These reading paths must be able to mutually influence each other as dis-
cussed in section 4.3.1. In addition, there is one shared rendering space in
ambient intelligent environments as opposed to individual tabs, windows or
screens running on different mobile devices. This in turn requires that the
rendering engine can dynamically change the set of action scripts it is inter-
preting/rendering. For more information we refer to section 6.2.3. Dynamic
updating support is also need to enable run-time modification of ambient nar-
rative fragments because action scripts of beats that are to be removed must
be retracted from the rendering engine to prevent further device action com-
mands specified in those beats.

4.5.3 Social scripts ...
The first part of Requirement AN.1 (Social scripts enhanced with ambient
technology) is addressed by the beat preconditions (Definition 4.10) that spec-
ify the restrictions on the physical context and ambient narrative state.

Many hypertext models that consider physical context are either targeted
towards mobile context-aware applications [Grønbæk, Vestergaard & Ørbæk,
2002] or augmented reality applications [Sinclair, Martinez, Millard & Weal,
2002; Grønbæk, Ørbæk, Kristensen & Eriksen, 2003; Romero & Correia,
2003]. The position and orientation of the user carrying or wearing the device
in the physical world alone is often sufficient for these types of applications.
For example [Grønbæk, Vestergaard & Ørbæk, 2002] describes a geo-spatial
hypermedia system that helps users with a mobile device in the field and peo-
ple working behind a PC in an office together. The Topos prototype system
is intended as an information organization tool that helps an architect on site
to bring the electronic documents and models relating to the project with him.
[Romero & Correia, 2003] discuss a hypermedia model in a physical interac-
tive storytelling environment and an augmented reality game that takes place
in a gallery environment. The player wears a head-up display that superim-
poses 3D objects that have been selected from a hypermedia graph based on
the position of the user in the real world and the state of the narrative.

To describe the social scripts in realistic ambient intelligent environments

92 Modelling Smart Environments

in which multiple actors can be involved in multiple activities using multi-
ple devices and applications supporting these performances simultaneously, a
richer context model is needed. The Contextual Media Integration Language
(CMIL) [CMIL, 2008] is intended for annotating multimedia content with
contextual information for browsing and information retrieval purposes.

Besides the ability to describe meta-data about multimedia clips (author,
keywords, copyright), system and device capabilities (screen-size, modal-
ity, language) and network bandwidth (bitrate) the CMIL specification also
presents language elements that enable an author to define location (loc), ori-
entation (orient), time and environmental conditions (custom att) for a digital
content item. Instead of a single digital content item the ambient narrative
model uses an action description (Definition 4.22) to describe what happens
when the context preconditions are satisfied. The Augmented World Model
(AWL) [Nicklas & Mitschang, 2001] in the Nexus project aimed towards de-
veloping an open framework for providers of location-based information. It
takes an object-oriented approach to model the real world, augmented by ad-
ditional information (e.g. web site). The authors additionally define an Aug-
mented World Query Language that supports object retrieval within the AWL
model. The AWL model consists of over 120 object classes, most of them
static objects (e.g. ‘building’, ‘room’, ‘road’). A similar approach is taken
by [Goβmann & Specht, 2002] that use a world model, augmentation layer
and in addition a domain and user model to model augmented environments.
Definitions 4.11 to 4.18 were based upon the list of context parameters in Ta-
ble 3.1 (p.41), inspired by the dramaturgical theory presented in Chapter 2 and
supported by the existing hypertext models above. The story value (Definition
4.20) restrictions in the beat preconditions to model tests on the narrative state
have been inspired by interactive storytelling systems, in particular [Mateas &
Stern, 2003; Szilas, 2003] that also maintain a story memory or session state
and allow operations on this state.

In the ambient narrative model, the social scripts could have been rep-
resented by RDF [RDF, 2008] or OWL [OWL, 2008] statements and rules
about the behavior of people, objects and devices in physical environments.
[Ter Horst, Van Doorn, Kravtsova & Ten Kate, 2002; Chen, F. Perich &
Chakraborty, 2004] for example use Semantic Web technology to represent
context facts and rules for ubiquitous computing environments. The subtree
matching process however as discussed in section 4.2 requires pairwise com-
parison (and calculation) of nodes in the context and preconditions trees in-
stead of logical inference. It is insufficient for example to merely infer whether
there is a time element in the context model under a certain stage. We have to
calculate whether the context time is within the time restrictions set by the pre-

4.5 Discussion 93

conditions of the beat or trigger. Although Semantic Web notation could still
be used for describing the social script, we opted for simple XML notation.

4.5.4 ... enhanced with ambient technology
The second part of Requirement AN.1 (Social scripts enhanced with ambient
technology) is covered by the beat action (Definition 4.21). It specifies the
operations on the ambient narrative state before, during and after activation of
a beat and the device action commands sent during and after beat activation
for rendering. The device action commands (Definition 4.23) are part of an
action script (Definition 4.22) that specifies the timing and synchronization of
actions over multiple devices (Requirement RT.4).

Originally, we started out using the Synchronized Multimedia Integration
Language (SMIL) [SMIL, 2008] as the basis for the action script language.
SMIL is inspired by the Amsterdam Hypermedia Model (AHM) [Hardman,
Bulterman & Rossum, 1994] which extends the Dexter hypertext reference
model [Halasz & Schwartz, 1994] by adding the specification of complex tem-
poral relationships among data items, high-level presentation attributes and
link context that are important in supporting hypermedia. Furthermore, the
ref media object element in the SMIL specification can be used to describe
generic media references which may also be used to specify light or other
ambient effects and/or specific software applications. SMIL and AHM as-
sume hypermedia presentations running on a single device (central control).
A way to extended the SMIL language to include timing and synchronization
of multimedia presentations over a set of devices is described by [Doornbos,
Clout & Ten Kate, 2003]. Another example of a platform, infrastructure and
language to describe and render distributed ambient media is amBX [Eves,
Cole & Callaway, 2008]. amBX has been designed for the home domain with
unknown configurations of devices in mind. The ambient narrative model
however assumes the (relative) location of devices is known and stored in a
context model (Definition 4.4) that is checked during a beat sequencing cycle.
The AHM and SMIL models are more powerful in expressing hypermedia
presentations than the action scripts in the formal ambient narrative model.
For example, the layout of multimedia objects on an individual screen cannot
be specified. The action script language is however light-weight and easier
to implement/modify and covers the basic minimum requirement of timing
device actions over multiple devices. In addition, other presentation markup
languages and rendering engines are allowed in the action section of a beat by
specifying the action type attribute (acty) in Definition 4.21.

94 Modelling Smart Environments

4.5.5 Run-time modification of ambient narrative fragments
To find a suitable formalism for action selection that meets the requirement of
run-time modification of narrative fragments we studied different approaches:
The Façade and many other interactive storytelling systems e.g. [Szilas, 2003;
Mott & Lester, 2006; Cavazza, Lugrin, Pizzi & Charles, 2007] use AI plan-
ning techniques to sequence plot elements into a compelling dramatic story.
[Davenport & Murtaugh, 1997] describes another form for action selection
using a spreading activation network based on [Maes, 1989] that is used to
select relevant story elements from a multimedia database and dynamically
join them into an appealing coherent narrative presentation. A Bayesian net-
work approach for computational storytelling in an immersive narrative space
is presented by [Sparacino, 2003]. The interval scripts formalism introduced
by [Pinhanez, Mase & Bobick, 1997] enable authors of interactive systems to
declare time intervals corresponding to the different actions and events and the
temporal relationship (e.g. sequence, overlap, meet) between some of those
pairs of intervals. This approach is used for a story-based, interactive system
named SingSong. The Trellis system explained in [Stotts & Furuta, 1989]
uses a formal Petri net based model to model synchronization of simultaneous
traversals of separate paths through a hypertext. A context-aware version of
Trellis (caT) that adapts the presentation of documents based on changes in
environmental information such as time, location, and bandwidth/cost is de-
scribed in [Na & Furuta, 2001]. When the reader browses caT documents,
the system provides dynamic documents from its collection, incorporating the
reader’s contextual and preference information.

The downside of these formalisms is that they assume a closed and fixed
set of fragments whereas the run-time authoring requirement states that hu-
mans and/or software agents should be able to add or modify story fragments
while the story is progressing. For example, Petri nets are typically used to
model closed environments, and the probability distributions in a Bayesian
network must be updated each time a new node is added or an existing one
removed. For this reason we decided to implement the ambient narrative as
described in section 4.4.

4.6 Concluding remarks
In this chapter we presented the formal ambient narrative model and com-
pared this model with existing work in (adaptive) hypermedia, interactive
drama and mixed reality. An ambient narrative is seen as a hypertext graph
in which the nodes (beats) represented situated actions and the links (triggers)
transitions between nodes. By performing in the physical environment, peo-

4.6 Concluding remarks 95

ple, objects and devices implicitly activate triggers and traverse this hypertext
graph. The collective performance is the combination of these (interacting)
hypertext readings. In contrast to mobile context-aware or augmented reality
applications, there is only one (shared) rendering space extends across mul-
tiple devices which implies that the rendering engine must support dynamic
updating of action scripts and timing and synchronization across devices.

Furthermore, we presented how the hypertext structure can be updated at
run-time to support dynamically changing ambient narratives. Because each
narrative fragment both reads (through testing its preconditions on the con-
text and session state) and writes (by sending action scripts for rendering and
modifying the story memory and/or list of active triggers) information, the dif-
ference between reading and writing text, consuming and producing symbolic
meaning, is only visible at the lowest level in the model. This offers the possi-
bility to build more complex dynamically changing ambient environments on
top of this formal model when we consider beats as ‘atoms’ and ambient nar-
ratives as ‘molecules’ that are subjected to (non-)deterministic ‘forcefields’
(changes in the context and session state) and other beat atoms and ambient
narrative molecules to which they react.

In the next chapter we discuss the implementation of (a subset of) the
ambient narrative model in the ambient narrative engine that forms the central
component in the system architecture that will be discussed in Chapter 6.

5
Ambient Narrative Engine

After having elicited the requirements in Chapter 3, we have formalized these
requirements and presented a formal approach in Chapter 4. In this chapter
we further specify and describe the realization of the Ambient Narrative En-
gine component that implements the formal ambient narrative model and core
language subset of Table 4.1. This component forms the central component
of the shop window system in Chapter 6.

The outline of this chapter is as follows: Section 5.1 describes the storage
and retrieval strategy for representing and managing the state of an ambient
narrative. The beat sequencing algorithm is discussed in Section 5.2. Sec-
tion 5.3 introduces and explains the algorithm to modify the beat set at run-
time. This chapter concludes by mapping these algorithms to classes in the
architecture of the Ambient Narrative Engine component that implement this
functionality (Section 5.4).

5.1 A database approach
To maintain the state of an ambient narrative over time persistent storage is
needed. In Section 4.1 the state of an ambient narrative (Definition 4.26) was
defined by the tuple (Ctx,Mem,B,AB,T) where Ctx represents the context sit-
uation (Definition 4.21), Mem the session state in the story memory (4.22), B

97

98 Ambient Narrative Engine

the beats in the beat set (4.23), AB the active beat set (4.25) and T the trig-
ger list (4.24). One possible approach is to store the beats in the beat set and
context situation as files on disk and load these files at run-time. This thesis
proposes an alternative approach where the beat sequencing problem is seen
as a retrieval problem where the physical context, session state and the trigger
set represent the user query and the (active) beat set the data set. By storing
the state of the ambient narrative in a modern database management system
(DBMS) physical and logical data independence [Tsichritzis & Klug, 1978] is
offered to users: Physical data independence hides the physical storage struc-
ture and access (file allocation, indexing, cache optimization) for the user, so
the author of the ambient narrative does not need to worry about which stor-
age strategy is most efficient given the size and type of queries performed
on the beat set. Logical data independence allows for changes in the logical
schema without having to rewrite existing applications. For example, if an
author uses a relative XPath location path in a trigger link to select all beats
that have a precondition element with an actor descendant node with a partic-
ular id, the trigger link does not need to be updated if the beat precondition
schema is modified (unless the actor node is no longer a descendant of a ‘pre’
node). In addition, complex queries, instead of links, can be formulated that
select multiple beats at once and/or aggregate data from different beats in new
beats. Finally, if multiple applications want to use the same data as the beat
sequencing application, compatibility is less of an issue for the application
developer.

Because an ambient narrative can be seen as a graph consisting of nodes
(beats) and edges between these nodes (triggers) with hierarchical beat nodes,
we can represent them as XML documents as discussed in Section 4.1. To
store and retrieve these XML documents we use eXist, an open-source native
XML DBMS [EXist, 2008] (version 1.1). This DBMS implements the XPath
[XPath, 2008] and XQuery [XQuery, 2008] standards for querying XML doc-
uments and the XUpdate [XUpdate, 2008] specification for updating XML
documents1.

In a first version of the ambient narrative engine that implemented the
beat sequencing algorithm, the complete state of an ambient narrative was
stored in XML documents and maintained by the eXist DBMS. The precondi-
tion checking, beat sequencing and run-time authoring operations were writ-
ten down as XQuery/XUpdate commands that would retrieve, manipulate and
write back the new state in the database. This approach is closest to viewing

1The W3C XQuery Update Facility [XQueryUF, 2008] standard was not yet available at
the time of writing the Ambient Narrative Engine component

5.2 Beat sequencing 99

the beat sequencing problem as an information retrieval problem and places
the entire state of an ambient narrative engine under control of the DBMS.
This implementation however did not satisfy Requirement RT.5 (No notice-
able difference in performance with a custom-built system): The execution of
the more complex XQueries as the precondition checking expression in Ap-
pendix A by the eXist engine took in the order of hundreds of milliseconds
and this led to unacceptable long beat sequencing cycles and a slow response
in the intelligent shop window environment.

For the final version this complete mapping was abandoned in favour of a
mapping where only the context and beat set are stored as XML documents.
The context, story memory and beats in the beat set are automatically loaded
into objects in memory at start-up or when first accessed (in case of beats).
Modifications on the context XML document and beat XML documents are
implemented by XUpdate expressions. In case of such a modification, the
memory object must be updated to ensure consistency. Adding and removing
beat XML documents is done using an eXist-specific API. For finding the
target of a link and querying the beat set, XPath expressions on the beat XML
documents are used. More detail on their usage will be given in the discussion
of the beat sequencing and run-time algorithms that follow next.

5.2 Beat sequencing
In Section 4.3 the beat sequencing process was defined as the problem of
determining the new state of an ambient narrative (an→ an′) after a change in
context (Ctx→Ctx′) or change in session state (Mem→Mem′). This section
describes how this beat sequencing process is implemented by the Ambient
Narrative Engine component.

Algorithm 1 lists the pseudocode to update the state of an ambient narra-
tive after a context or session state change event. A completed state update
is one beat sequence cycle. The algorithms of procedures specified in small
capitals can be found in the text of this chapter. The BEATSEQUENCING al-
gorithm starts if an event is received that represents a context change or story
value change.

First, a lock is created on both the context model and story memory to
ensure that all reads and updates during a transaction (beat sequence cycle)
operate on the same data. The snapshot isolation of the context model ensures
that one thread can update the context model while another thread can update
the state of the ambient narrative. Because a beat sequencing cycle does not
modify the context model, there is no need to check for conflicts once the
transaction has finished. Concurrent transactions on the story memory are not

100 Ambient Narrative Engine

Algorithm 1: BEAT SEQUENCING
Input: event
Output: AB, B\AB
LockState();
if (UPDATECONTEXT(event) ∧ UPDATESTORYMEMORY(event) == 0) then

UnLockState();
return

end
Initialize set of all invalid beats: IS = GETINVALIDBEATS(AB);
Initialize set of all activated beats: AS = /0;
if (| IS |> 0) then

UPDATEACTIVEBEATSET(AS,IS);
end
RECOMPUTETRIGGERS(AS,IS);
RemoveDuplicates(AS,IS);
SENDACTIONSCRIPTS(AS,IS);
NotifyListeners(AB,B\AB);
UnLockState();

allowed, only the beat sequence thread can modify the story memory. This
way there is also no need to check for conflicts on the story memory. The lock
on the context model and story memory must be released if the beat sequence
cycle has been completed.

If the UPDATECONTEXT procedure changes the context model or if
the UPDATESTORYMEMORY procedure alters the state of the story mem-
ory, the new state must be calculated. This proceeds in a number of
steps. First, the set of invalid beats is calculated by the GETINVALID-
BEATS procedure. If the preconditions of a beat in the active beat set are
no longer satisfied by the new context and memory state, the active beat
set must be modified. This is done by the UPDATEACTIVEBEATSET pro-
cedure. If the UPDATEACTIVEBEATSET procedure has completed the re-
sulting set of activated beats and set of invalid beats is used as input for the
RECOMPUTETRIGGERS procedure that checks for triggers that have been ac-
tivated by the state change.

When the RECOMPUTETRIGGERS procedure has finished, the lists of ac-
tivated and invalid beats need to be compared and checked for duplicate en-
tries. In one beat sequence cycle a beat can be added and removed again.
These pairs can be filtered out because they do not cause an effect on the out-
side world in terms of changes in the active beat set or device actions that are
rendered in the environment. For example, the activated beat set AS = B,A,C
and invalid beat set IS = A,D,B result in AS = C and IS = D after removal of
duplicate, temporary beat entries.

5.2 Beat sequencing 101

After the activated beat set and invalid beat set have been filtered, the
action section of these beats is processed by the SENDACTIONSCRIPTS pro-
cedure for action scripts that need to be rendered by the rendering engine. All
clients interested in changes of the active beat set and beats in the beat set that
are currently inactive are notified (NotifyListeners).

5.2.1 Updating the logical context model
The UPDATECONTEXT procedure described by Algorithm 2 expects a context
event with an operation type, element name, parent object and a list of attribute
name, value pairs. It parses the event and generates an XUpdate query that is
executed on the logical context database. The UPDATECONTEXT procedure
essentially creates an XML node that is either inserted in or removed from the
context XML document tree depending on the operation type.

Algorithm 2: Update Context
Input: event
Output: 1 if the context event has been processed, 0 otherwise
query = CreateContextQuery(parseEvent(event));
updated = Update(contextDB,query);
if updated then

return 1 ;
end
else return 0 ;

The Ambient Narrative Engine and UPDATECONTEXT procedure operate
on a logical context model, i.e. a symbolic description of the physical en-
vironment that abstracts away from the exact physical coordinates of areas,
people, and things and time. The physical context model that maintains a
view of the raw sensor data is maintained by the Context Server component
that will be discussed in Section 6.2.1. The reasons for separating the context
model in a physical context model and a logical context model are scalability
and portability. If all raw sensor data would be fed through a central reason-
ing component this would create a potential performance bottleneck in the
system. By working on a symbolic description of the physical environment
that records only the relevant entities and their relations, the semantics of the
original physical environment remains intact but data with little or no mean-
ing is filtered out. This reduces the workload on the beat sequencing process
and enables the ambient narrative engine to reason about information coming
from many sensors. A second benefit of distinguishing between a physical
and logical context model is that the geometric and site specific information is
defined in the physical context model. Only this model needs to be copied and
modified to port an ambient narrative from one place to another. This however

102 Ambient Narrative Engine

does not imply the physical context information should be hidden away from
the application layer as some applications started by device action command
may need to have access to real-time data streams from one or more sensors.
The ambient narrative Editor component (Section 6.4) needs access to the
physical context information to update the position of people and objects in
the shop window area, for example. Similar to [Ranganathan, Al-Muhtadi &
Chetan, 2004] we offer applications therefore access to both the physical and
logical context model.

To explain how a logical context event is processed by the UPDATECON-
TEXT procedure consider the following example. Suppose an actor named
actor1 in role customer appears on a stage called interact1. This logical con-
text event is represented by the following event message:
add context interact1 actor id actor1 role customer

After parsing this event, the following XUpdate query is created and exe-
cuted on the context database, adding an actor node in the context tree under
a performance node that has a stage element parent node with an attribute id
having the value interact1 :
<xupdate:modifications version="1.0"
xmlns:xupdate="http://www.xmldb.org/xupdate">
<xupdate:remove

select="/context/pre/stage[@id=’interact1’]/*/actor[@id=’actor1’]/>
<xupdate:append

select="/context/pre/stage[@id=’interact1’]/performance"
child="last()">

<actor id=’actor1’ role=’customer’/>
</xupdate:append>
</xupdate:modifications>

Note that an actor can be in multiple symbolic locations (stages) simulta-
neously (as stages can overlap) but an actor can only be present on each stage
once.

5.2.2 Updating the story memory
Algorithm 3 shows the UpdateStoryMemory procedure which implements the
operations 4.3, 4.3 and 4.3. If a story value event has been received, the story
memory is updated depending on the story value action and whether a story
value with the same id already exists in the story memory in which case the
previous value and new value need to be added. Updating an existing story
value supports the construction of story arcs as used in Façade system [Mateas
& Stern, 2003]: Beats can cooperate to increase or lower a story value until a
beat becomes active that retracts the story value.

5.2 Beat sequencing 103

Algorithm 3: UPDATE STORY MEMORY
Input: sv
Output: 1 if the story value event has been processed, 0 otherwise
if (svac == ’add’) then

if (Mem contains sv) then
m = Get(Mem,sv);
Replace(Mem,m,mval + svval);

end
else

Mem∪ sv;
end
return 1;

end
if (svac == ’remove’) then

Mem\ sv;
return 1;

end
return 0;

5.2.3 Determining invalid beats
The implementation of the GETINVALIDBEATS procedure is described by Al-
gorithm 4 which fulfills Equation 4.3.3. For each beat in the active beat set we
need to check if its preconditions still hold against the new updated context
model and story memory by calling the CHECKPRECONDITIONS procedure.
If this procedure returns false the beat is added to the invalid beat set.

Algorithm 4: GET INVALID BEATS
Input: active beat set AB
Output: invalidated beats IB
beat b;
IB = /0;
foreach (b ∈ AB) do

res = CHECKPRECONDITIONS(b/pre,Ctx,Mem);
if (res == 0) then IB∪b

end
return IB;

5.2.4 Checking beat and trigger preconditions
The precondition checking algorithm is used to determine if the precon-
dition section of a beat or trigger have been satisfied or not (Algorithm
5). The CHECKPRECONDITIONS procedure is used by the GETINVALID-
BEATS procedure to determine if active beats are no longer valid and by the
RECOMPUTETRIGGERS procedure if triggers in the trigger set need to be ac-
tivated and their links/queries executed.

104 Ambient Narrative Engine

Algorithm 5: CHECK PRECONDITIONS
Input: Precondition Pre, context Ctx and story memory Mem
Output: 1 if the beat precondition is satisfied, 0 otherwise
stageValid, per f ormanceValid,aCount, prCount,svCount = 0;
Initialize performance table: P = /0;
sp = Pre/stage;
foreach (Stage sc in Ctx/stage) do

stageValid = StageCheck(sp,sc);
if (stageValid == 1) then break;

end
if (stageValid == 0) then return 0;
foreach (Performance pp in sp/per f ormance) do

foreach (Performance pc in sc/per f ormance) do
per f ormanceValid = PerformanceCheck(pp,pc);
if (per f ormanceValid == 1) then

P ∪ (pp,pc);
pCount ++;
break;

end
end

end
if (pCount 6=| sp/per f ormance |) then return 0;
foreach Performance pp in precondition performance list of P do

pc = Context performance restriction for pp in P;
if (ActorCheck(pp,pc) == 1) then aCount ++;
if (PropCheck(pp,pc) == 1) then prCount ++;

end
if (aCount 6=| P |)∨ (prCount 6=| P |) then return 0;
foreach (Story value svp in Pre/storyvalue) do

foreach (Story value svc in Mem) do
if (StoryValueCheck(svp,svc) == 1) then svCount ++;

end
end
if (svCount 6=| Pre/storyvalue |) then return 0;
return 1;

The CHECKPRECONDITIONS procedure provides a partial implementa-
tion of the formal precondition checking model of of Section 4.2. More pre-
cisely, it implements the necessary precondition tests to support the core lan-
guage subset of the ambient narrative model in Table 4.1 with the exception of
the position test that is performed outside the ambient narrative engine com-
ponent.

The precondition checking algorithm assumes each precondition has only
one stage with each stage having one or more performances. The StageCheck,
ActorCheck, PropCheck and StoryValueCheck procedures implement the for-
mal precondition tests defined by Equations 4.2.1, 4.2.5, 4.2.6 and 4.2.9, re-

5.2 Beat sequencing 105

spectively. For the intelligent shop window scenario presence is the only per-
formance that is detected and reasoned about so the PerformanceCheck proce-
dure (Equation 4.2.4) tests only on whether there is a presence performance or
not. The time, condition, orientation precondition tests are not implemented
(Equations 4.2.2, 4.2.3 and 4.2.7). The position test (Equation 4.2.8) is han-
dled outside the ambient narrative engine and partially implemented; only
tests on whether an actor or prop is within a certain stage marked by absolute
coordinates are possible (Co attribute only in Definition 4.9). A prop can also
be set to be omnipresent to make it part of every stage. To test whether an
actor or prop is on a certain stage, the coordinates of the corners of the stage
and the position of the actor or prop are needed. This information is part of the
physical context model and is maintained by the Context Server component
that will be discussed in Section 6.2.1.

The order of the precondition tests can be varied to try out different opti-
mization strategies. Algorithm 5 uses a breath-first search strategy that starts
by searching for a stage node in the context tree that matches the stage pre-
condition node. If the context stage node does not pass the stage test, the node
and its child nodes are pruned from the search tree.

The difference in implementation of the core language subset and the com-
plete specified language model with regard to the Ambient Narrative Engine
is in the CHECKPRECONDITIONS and UPDATECONTEXT procedures. To im-
plement the complete language model, the CHECKPRECONDITIONS proce-
dure needs to implement additional precondition tests and the UPDATECON-
TEXT procedure must be extended to be capable of inserting or removing such
nodes in the logical context model. The main reasons for not implementing
this complete language model here is not so much the complexity of the ambi-
ent narrative engine but the shop window carrier application and the Context
Server and Editor components in the ambient narrative system architecture
that are discussed in the next chapter.

5.2.5 Updating the active beat set
The UPDATEACTIVEBEATSET procedure described by Algorithm 6 manages
the active beat set and looks for trigger and story value elements in the final
section of beats that are removed from the active beat set and in the init section
of beats that need to be added to the active set. Triggers and story values in the
main section are not allowed. The UPDATEACTIVEBEATSET procedure im-
plements the operations ADDACTIVEBEAT and REMOVEACTIVEBEAT (sec-
tion 4.3) but does not send the action scripts to the rendering engine. This is
done at the end of the beat sequence cycle after the RemoveDuplicates proce-
dure to prevent temporary beats from influencing the rendering process.

106 Ambient Narrative Engine

Algorithm 6: UPDATE ACTIVE BEAT SET

Input: activatedBeats, invalidBeats
Output: AS, IS
foreach (b ∈ invalidBeats) do

FT = b// f inal/trigger;
foreach (t ∈ FT) do

UPDATETRIGGERLIST(t ,T);
end
FSV = b// f inal/storyvalue;
foreach (sv ∈ FSV) do

UPDATESTORYMEMORY(sv,Mem);
if (Mem has changed) then

moreInvalidBeats = GETINVALIDBEATS(AB);
UPDATEACTIVEBEATSET(/0,moreInvalidBeats);

end
end
AB\b;
TAB \ tb;

end
foreach (b ∈ activatedBeats) do

AB ∪ b;
TAB ∪ tb;
IT = b//init/trigger;
foreach (t ∈ IT) do

UPDATETRIGGERLIST(t ,T);
end
ISV = b//init/storyvalue;
foreach (sv ∈ ISV) do

UPDATESTORYMEMORY(sv,Mem);
if (Mem has changed) then

moreInvalidBeats = GETINVALIDBEATS(AB);
UPDATEACTIVEBEATSET(/0,moreInvalidBeats);

end
end

end
AS ∪ activatedBeats;
IS ∪ invalidBeats;

The UPDATEACTIVEBEATSET procedure expects two lists, a list of beats
that must be added to the active beat set (activated beats) and a list of beats
that must be removed from the active beat set (invalid beats).

First the final section of each beat in the invalid beat list is checked for
trigger and story value commands. If a trigger command has been found, the
UPDATETRIGGERLIST procedure is invoked to update the trigger set. If a
story value command is encountered, the story memory is updated by calling
the UPDATESTORYMEMORY procedure. After these changes have been com-

5.2 Beat sequencing 107

mitted, the beat can be removed from the active beat set and the corresponding
trigger in the active trigger list can be removed.

For each beat in the activated beat list we first add the beat to the active
beat set and its corresponding trigger to the active trigger list. Next, the ‘init’
section of each beat in the set of activated beats is inspected for trigger and
story value commands. The trigger list and story memory are updated if trig-
ger and/or story value commands have been encountered.

Note that after the story memory has changed, new beats may have be-
come invalid. The UPDATEACTIVEBEATSET procedure must be invoked
with this new set of invalid beats until the set of invalid beats remains un-
changed.

5.2.6 Updating the trigger list
Algorithm 7 describes the implementation of the UPDATETRIGGERLIST pro-
cedure that fulfills operation 4.3.

Algorithm 7: UPDATE TRIGGER LIST
Input: trigger t, trigger list T
Output:
if (t /∈ T) then

if (tbe == ’add’) then
T ∪ t;

end
if (tbe == ’remove’) then

T \ t;
end

end

5.2.7 Testing on new triggered links
After a context or story memory change the BEATSEQUENCE procedure must
call the RECOMPUTETRIGGERS procedure (Algorithm 8) to check for newly
activated triggers.

For each trigger in the trigger list that is not yet active, the trigger precon-
ditions need to be checked (Equation 4.3.4). If the preconditions match, the
trigger link is added to set of activated links.

For each link in the activated link set the to and from link attributes need to
be processed. The value of the to attribute is an XQuery expression that must
be executed on the beat set, the value of the from attribute is an XQuery ex-
pression that is executed on the active beat set. Although complex XQuery ex-
pressions are allowed, the shop window system uses simple XPath expressions
to select individual beats for addition or removal. For example the XPath ex-

108 Ambient Narrative Engine

Algorithm 8: RECOMPUTE TRIGGERS
Input: AS, IS
Output: AS, IS
Initialize activated links: activatedLinks = /0;
Initialize activated beat set: activeBeats = /0;
Initialize invalidated beat set: invalidBeats = /0;
res = 0;
foreach (t ∈ T ; t /∈ TAB) do

res = CHECKPRECONDITIONS(t/pre,Ctx,Mem);
if (res == 1) then TAB∪ t;
activatedLinks∪ t/link;

end
foreach (l ∈ activatedLinks) do

if lto then activeBeats∪ ExecuteQuery(B,lto);
if l f r then invalidBeats∪ ExecuteQuery(AB,l f r);

end
if (| activeBeats |= 0)∧ (| invalidBeats |= 0) then

return AS, IS;
end
AS, IS = UPDATEACTIVEBEATSET(activeBeats,invalidBeats);
if (| AS |> 0)∨ (| IS |> 0) then

RECOMPUTETRIGGERS(AS,IS);
end

pression //beat[@id=’attractorMode’] returns a single beat named
attractorMode.

If beats have been retrieved as a result of these queries, the
UPDATEACTIVEBEATSET procedure is called with as parameteres the re-
sults of the addition queries and the results of the removal queries. The
RECOMPUTETRIGGERS is then called again until no new triggers are acti-
vated.

The RECOMPUTETRIGGERS and UPDATEACTIVEBEATSET procedures
form the core of the beat sequencing algorithm. In the current implementation
first all story value changes are processed and beats are removed until no beats
with invalid preconditions exist in the active beat set and the story memory
remains unchanged. Then we check for newly activated triggers and also start
to add beats to the active beat set. During this process the story memory may
change again and newly added beats can be rendered invalid. The process
stops if the preconditions of all active beats are still valid (Equation 4.3.1) and
no new triggers are activated (Equation 4.3.2).

5.2 Beat sequencing 109

5.2.8 Sending action scripts
At the end of a beat sequence cycle, after having filtered out temporary du-
plicate beats the SENDACTIONSCRIPT procedure is called to inform the ren-
dering engine of the changes in the active beat set. Algorithm 9 shows the
implementation of this procedure.

Algorithm 9: SEND ACTION SCRIPTS
Input: AS,IS
Output:
foreach (b ∈ IS) do

target = b/action/@ta;
type = b/action/@ty;
SendData(type,target,b// f inal/script);

end
foreach (b ∈ AS) do

target = b/action/@ta;
type = b/action/@ty;
SendData(type,target,b//main/script);

end

For each beat in the invalid and active set the rendering engine machine
address and type is looked up by reading the target and type attributes of the
action element of the beat. This information is used to send the main (for beats
in the active set) or final (for beats in the invalid set) action script containing
device action commands to the right rendering engine.

5.2.9 Beat sequence cycle control
The RECOMPUTETRIGGERS and UPDATEACTIVEBEATSET algorithms can
lead to long or infinite beat sequence cycles because of their recursive nature.
Inside a beat sequence cycle the context itself is never modified and since
beats cannot modify the context model, the problem can be traced back to the
story value mechanism. For example if beat A tests on a story value X=1 in
its precondition part and sets Y=1 and Z=0 in its action part and a beat B tests
on Y=1 and sets X=0 and Z=1 and a beat C tests on Z=1 and sets X=1 and
Y=0 the UpdateActiveBeatSet procedure will never terminate once beat A is
activated and there exists a trigger in the trigger list (or is set by A or B) with
a link that points to beat B and C. Contrary to social script conflicts (e.g. one
beat sets a light on, the other one switches it off, both under the same set of
preconditions), conflicts like these inside a single beat sequence cycle cannot
be resolved by the editor but need to be prevented by the engine at run-time in
the hypertext graph as it is being constructed and modified.

Section 4.3 discussed rules to ensure the order of story memory and trigger
modifications does not affect the outcome. Rule 4.3.7 also prevents the types

110 Ambient Narrative Engine

of conflicts above: If beat B is not allowed to change story value Z to 1, beat C
cannot set the story values X and Y. Determining whether this rule is violated
can be difficult because beats A and B may modify the trigger list, leading to
new beats being added and others removed that have to be checked as well.
This process can take place at editing/authoring time when end-users modify
the ambient narrative using the authoring environment. Finally we note that
this rule can be relaxed in certain situations: If beat B removes the trigger
that activates C in the example, the cycle terminates even though Rule 4.3.7 is
violated.

The heuristics mentioned in Section 4.3.1 for dealing with race conditions
also apply here. General beats (few preconditions) are more likely to cause
interference with other beats than specific ones. Keeping the size of the story
memory and trigger list small reduces the chance of write conflicts. Finally,
the question can be raised how important this problem is in practice. The user-
generated ambient narratives of Chapter 2 for example do not (yet?) show this
level of complexity. In the next section our policy will be discussed in more
detail when we look closer at the types of hypertext graphs end-users are able
to make.

5.3 Run-time authoring
The run-time modification of ambient intelligence fragments to support co-
creation environments was defined in Section 4.4 as the problem of determin-
ing the next state of the ambient narrative, an→ an′, given a change in the beat
set, B→ B′. In this section the implementation of the run-time authoring sup-
port is discussed in detail. Three different situations can be identified: beat
addition, beat removal and beat modification. The implementation of these
operations will be explained in detail but first we discuss how the hypertext
graph is modified when a beat is added or removed.

5.3.1 Modifying the hypertext graph
By adding and removing triggers in the ‘init’ and ‘final’ section of beats the
author of the ambient narrative can create a variety of hypertext graphs. This
gives the author control over which beats can be activated in which situation.
The author may decide for example to write one beat that sets the triggers for
all the other beats in the ambient narrative, create a beat that will remove an
number of triggers to prevent a subset of the beats to become active or create
more complex schemes where multiple beats contain commands to add and
remove triggers.

Essentially, the mechanism to set and retract triggers enables the author

5.3 Run-time authoring 111

of the ambient narrative to write an optimization strategy to manage the size
of the trigger list that is accessed by the RECOMPUTETRIGGERS procedure.
The advantage of this approach is that the author can implement different
optimization schemes without having to change the source code of the ambient
narrative engine itself, as this optimization strategy is defined in the ambient
narrative itself.

However, understanding and choosing how to distribute set and retract
trigger commands over the beats in the ambient narrative can be difficult for
experts let alone end-users without a programming background. To support
these end-users in creating intelligent shop window applications in our case,
we need to choose an optimization strategy in advance that is used to modify
the hypertext graph when an end-user adds or remove a beat so that end-users
can concentrate on specifying the beat precondition and action.

Figure 5.1: Adding a beat node in the hypertext graph

Because an intelligent shop window ambient narrative typically covers
only a small area of a store and consists of a small number of beats in total,
it was decided to create one start-up beat with empty preconditions so that it
would always be active. Figure 5.1 graphically illustrates this strategy. When
a user adds a new beat (target beat), a trigger element with the preconditions of
this new beat and an add/to link to this new beat is created and appended to the
init section of the start-up beat (source beat). When a user removes a target
beat its corresponding trigger in the source beat is removed. To update the

112 Ambient Narrative Engine

source beat an XUpdate expressions is generated that appends a trigger to the
target beat in the source beat. Adding a target beat is done by adding the XML
document to the beat collection, removing by deleting the XML document
from the beat collection. This flat structure guarantees that all triggers are
always checked by the RECOMPUTETRIGGERS procedure. As the size of the
ambient narrative is small this is not an issue. This strategy also prevents
non-terminating beat sequence cycles as a result of recursive modifications to
the trigger list. The restriction on the story memory modification is built into
the ambient narrative editor that will be discussed in Section 6.4. This editor
restrains authors from setting story values that have the same id. This works
as follows: Once a beat is created by the editor, a story value element with the
id of the new beat is added to the init and final sections of the new beat. If the
beat is activated, the story value is added, if it is deactivated, the story value is
removed. The user interface of the editor enables users to test on these story
values and this way create dependencies between different beats.

The intelligent shop window application of Section 3.3 in total needs one
start-up beat with triggers to 9 beats; one beat for the product slideshow pre-
sentation on the four shop windows, four beats for the interactive shop win-
dow presentation on the individual shop windows and another four beats to
describe the situation when no person is standing in front of a particular shop
window display but there is a person standing in front of one of the other shop
window displays.

5.3.2 Adding beats
Algorithm 10 describes how a beat is added to an ambient narrative and how
this action affects the beat sequencing process. The ADDBEAT procedure
implements operation 4.4.

The ADDBEAT procedure starts by checking if the target beat that must
be added already exists in the beat set. If this is the case the target beat is first
removed by calling the REMOVEBEAT procedure. After this step the target
beat can be stored in the beat collection (StoreBeatOnDisk). Next, the source
beat must be updated (UPDATESOURCEBEAT) and the generated XUpdate
query applied on the database (ExecuteQuery). Note that for offline authoring
we could stop after this step: If the ambient narrative engine is restarted the
source beat will be loaded from disk and the beat sequencing process proceeds
normally.

The ambient narrative is now updated in the database but the source beat
has been altered so we need to reload the source beat to ensure the newly
added trigger in the init section is part of the source beat object in memory
(ReloadSourceBeat, ReplaceBeat). If the source beat is also present in the

5.3 Run-time authoring 113

active beat set, the old source beat must be replaced by this new source beat
(ReplaceBeat). Next, the newly added trigger must be added to the trigger list
(UPDATETRIGGERLIST).

Algorithm 10: ADD BEAT

Input: Beat bt
Output:
LockState();
if (bt ∈ B) then

REMOVEBEAT(bt ,B);
end
StoreBeatOnDisk(bt);
ExecuteQuery(UPDATESOURCEBEAT(bt ,ADD),beatDB);
bs = ReloadSourceBeat(bt ,B);
ReplaceBeat(B,bs);
if (bs ∈ AB) then

ReplaceBeat(AB,bs);
end
foreach (t ∈ bs//init/trigger) do

UPDATETRIGGERLIST(t,T);
end
AS = /0;
IS = /0;
RECOMPUTETRIGGERS(AS,IS);
RemoveDuplicates(AS,IS);
SENDACTIONSCRIPTS(AS,IS);
NotifyListeners(AB,B\AB);
UnLockState();

The RECOMPUTETRIGGERS procedure must be invoked to check if the
newly added trigger is fired. The beat sequencing process continues by fil-
tering out the temporary duplicate beats (RemoveDuplicates), sending out
the action scripts (SENDACTIONSCRIPTS) and notifying clients interested in
changes of the (active) beat set (NotifyListeners).

5.3.3 Updating the source beat
The UPDATESOURCEBEAT procedure is specified by Algorithm 11. After
finding the source beat of the target beat (FindSourceBeat), the trigger that
points to the target beat must be added to the source beat. The CreateSource-
BeatQuery procedure generates the XUpdate query to modify the source beat
in the beat set. This query is then executed on the beat set (Update). The
source beat is returned if this operation is successful.

To add a trigger refering to a target beat OnInteractMode1 in a source beat
named OnStartUp, the following XUpdate expression (precondition markup
omitted) is generated and executed on the beat collection:

114 Ambient Narrative Engine

<xupdate:modifications version="1.0"
xmlns:xupdate="http://www.xmldb.org/xupdate"
<xupdate:remove

select="//beat[@id=’OnStartUp’]/action//
trigger[@id=t_OnInteractMode1’]"

<xupdate:append
select="//beat[@id=’OnStartUp’]/action/init" child="last()">

<trigger id="t_OnInteractMode1" behavior="add">
<pre>...</pre>
<link behavior="add" id="l_OnInteractMode1"

to="//beat[@id=’OnInteractMode1’]" />
</trigger>
</xupdate:append>
</xupdate:modifications>

Algorithm 11: Update Source Beat
Input: beat bt
Output: beat bs
bs = FindSourceBeat(bt);
query = CreateSourceBeatQuery(bs,bt));
updated = Update(beatDB,query);
if updated then

return bs ;
end
else return 0 ;

5.3.4 Removing beats
The procedure to a remove beat is depicted by Algorithm 12. REMOVE-
BEAT starts by finding the trigger that refers to the target beat (FindTrig-
ger) that must be removed and removing this trigger from the trigger list
(UPDATETRIGGERLIST) to prevent this beat from being activated in the fu-
ture. If the target beat is in the active best set, its trigger must be removed from
the list of activated triggers. A beat sequence cycle is then started with the tar-
get beat in the invalid beat set. After the beat sequence cycle has stopped and
clients interested in changes of the (active) beat set have been notified (No-
tifyListeners), we can safely update the beat database. Note that for offline
authoring we can start at this point in the algorithm.

First, the source beat must be updated (UPDATESOURCEBEAT) and the
generated XUpdate query must be applied on the database (ExecuteQuery).
Since the source beat has been altered we need to reload the source beat to
ensure the removed trigger is also no longer part of the source beat object in
memory (ReloadSourceBeat, ReplaceBeat). If the source beat is also present
in the active beat set, the old source beat must be replaced by this new source
beat (ReplaceBeat). The target beat can now be deleted in the beat database
by calling the RemoveBeatOnDisk procedure.

5.4 Component implementation 115

Algorithm 12: REMOVE BEAT

Input: Beat bt
Output:
LockState();
t = FindTrigger(bt ,T);
UPDATETRIGGERLIST(t,T);
if (bt ∈ AB) then

UPDATETRIGGERLIST(t,TAB);
activatedBeats = /0;
invalidBeats = /0∪bt ;
AS, IS = UPDATEACTIVEBEATSET(activatedBeats,invalidBeats);
RECOMPUTETRIGGERS(AS,IS);
RemoveDuplicates(AS,IS);
SENDACTIONSCRIPTS(AS,IS);
NotifyListeners(AB,B\AB);

end
ExecuteQuery(UPDATESOURCEBEAT(bt ,REMOVE),beatDB);
bs = ReloadSourceBeat(bt ,B) ReplaceBeat(B,bs);
if (bs ∈ AB) then

ReplaceBeat(AB,bs);
end
RemoveBeatOnDisk(bt);
UnLockState();

5.3.5 Modifying beats
To edit a beat b first a copy b′ is made that has the same beat id. The orig-
inal beat is first removed and then the modified copy is added as shown by
Algorithm 13 (EDITBEAT).

Algorithm 13: EDIT BEAT

Input: Beat b, b′

Output:
RemoveBeat(b,B);
AddBeat(b′,B);

5.4 Component implementation
To conclude this chapter we describe the architecture of the Ambient Narra-
tive Engine component and the mapping of the procedures introduced in the
previous sections to the classes of this component. This section concentrates
on the core functionality, in Section 6.2.2 the interfaces to the other compo-
nents in the shop window system architecture are discussed. Figure 5.2 shows
the UML static structure diagram [Fowler, 2003] of this component in detail.
Method and field names have been omitted for readability, only classes and

116 Ambient Narrative Engine

their relations are depicted.
The Main class starts the Engine. The Engine creates two servers to which

clients can connect, the EventServer and the AuthorServer.

Figure 5.2: Static structure diagram Ambient Narrative Engine component

The EventServer accepts requests from clients interested in sending log-
ical context events and/or receiving notifications of changes in the (active)
beat set and creates a separate thread (EventHandler) for each client. The
AuthorServer waits for incoming requests of clients who want to modify the

5.5 Concluding remarks 117

beat database. For each author client a new thread (AuthorHandler) is cre-
ated. In addition, the Engine class creates a DBConnectorFactory class that
will instantiate a connection to a database for storing and retrieving context
and beat information. To support different database implementations without
changing code, each specific database connector must implement an abstract
interface called DBConnector. In the current implementation only an eXist
DBMS database connector is supported (XMLDBConnector).

The DBConnector controls access to the context and beat database and
caches the ambient narrative state for classes that perform operations on
this state. The data classes Context, StoryMemory, DBCache (beat set),
ActiveTriggerSet (list of currently activated and set but unactivated triggers),
ActiveBeatSet and Beat cover the main elements of the ambient narrative data
model, i.e. Definitions 4.21, 4.22, 4.23, 4.24, 4.25 and 4.1. respectively. Data
classes Pre (Definition 4.2), Link (Definition 4.20), Trigger (Definition 4.19)
and StoryValue (Definition 4.12) are not shown in Figure 5.2. The other def-
initions in Section 4.1 are not implemented as special classes but as lists of
key-value pairs where the key represents the attribute name and the value the
attribute value.

The EventHandler class is responsible for beat sequencing. The
AuthorHandler for run-time modification of the ambient narrative. The
ContextChangeHandler class takes care of updating the context model. The
ActionHandler class controls the communication with the rendering en-
gine and sends action scripts. The TriggerHandler, StoryValueHandler,
LinkHandler classes are used to process trigger, story value and link com-
mands encountered during the beat sequencing or run-time authoring pro-
cesses.

5.4.1 Procedure class mapping
Table 5.1 finally describes the mapping of the procedures onto the classes of
Figure 5.2.

5.5 Concluding remarks
In this chapter we described the implementation of the ambient narrative en-
gine and more specifically, the beat sequencing and run-time authoring algo-
rithms as presented in the formal model of Chapter 4. Beat sequencing is
treated as a retrieval problem where the physical context, session state and
the trigger set represent the user query and the (active) beat set the data set.
We discussed caching of the ambient narrative state for achieving real-time
response times and heuristics for avoiding sequencing problems and race con-

118 Ambient Narrative Engine

Procedure Class(es)
BEATSEQUENCE EventHandler
UPDATESTORYMEMORY StoryValueHandler,

DBConnector
UPDATECONTEXT ContextChangeHandler,

DBConnector
UPDATEACTIVEBEATSET EventHandler, DBConnector
CHECKPRECONDITIONS EventHandler, DBConnector
RECOMPUTETRIGGERS LinkHandler, DBConnector
UPDATETRIGGERLIST TriggerHandler, DBConnector
SENDACTIONSCRIPTS, SendData ActionHandler
ADDBEAT, REMOVEBEAT, EDITBEAT AuthorHandler, DBConnector
LockState, UnLockState EventServer, AuthorServer
NotifyListeners EventHandler
RemoveDuplicates EventHandler

All procedures mentioned in the text but not shown here are implemented by
DBConnector.

Table 5.1: Mapping of procedures to classes

ditions during beat sequence cycles. We showed how run-time authoring is
implemented by modifying hypertext graphs and how the setting and retract-
ing of triggers can be used as an optimization strategy to control the size of
the trigger list. In the next chapter we discuss the interfaces to this ambient
narrative engine in the overall system architecture.

6
An End-user Programmable Shop

Window System

The formal ambient narrative model described in Chapter 4 covers the subset
of functional retail requirements that addresses the language features needed
to describe beats and the processes to sequence and modify these modular
ambient intelligence fragments at run-time. In this chapter we discuss the re-
maining requirements that were not discussed in Chapter 4 and specify the
system architecture of an intelligent shop window system that can be pro-
grammed by end-users. We describe the interfaces to the Ambient Narrative
Engine component discussed in Chapter 5 and show how this component is
embedded in the overall system architecture.

This chapter is organized as follows: Section 6.1 presents an end-user
software engineering approach for controlling the entire lifecycle of ambient
narratives and provides an overview of the main components and interfaces
between these components in the intelligent shop window system. The indi-
vidual components in this system architecture and their interface to the end-
user are further discussed in Sections 6.2, 6.3, 6.4 and 6.5.

119

120 An End-user Programmable Shop Window System

6.1 An end-user software engineering approach
Experience design is a multi-disciplinary effort and therefore the needs of
several stakeholders need to be taken into consideration in the design of an
end-user programmable shop window system. Unless otherwise mentioned
we refer to user roles in the following sections because one stakeholder can
be e.g. both retailer and operator. Section 3.2.2 showed that designers had a
preference for the 3D simulation environment for creating and testing smart
retail environments whereas retailers saw the in-situ authoring environment
using a PDA as more appropriate. As several participants commented they
would want to use both end-user programming environments in combination,
the intelligent shop window system system architecture should address both
Requirements SE.1 (3D simulation) and SE.4 (in-situ using PDA).

Besides the need for an end-user programming environment that is easy to
use and suitable for different types of end-users, efficiency is another impor-
tant issue. An intelligent shop window is seen by a retailer as an investment
to attract more people to his store. The benefit of this investment should out-
weigh the cost of the investment in the smart retail environment to create a
positive return on investment. The total cost of the investment does not only
depend on the costs of purchasing and installing the necessary hardware and
software and programming the required behavior but also the operational costs
of maintaining and updating the intelligent behavior of the shop window sys-
tem over time. This implies that the entire life cycle of creating, testing, de-
ploying, maintaining and updating the intelligent behavior of a shop window
system needs to be taken into account, not just the create phase.

In professional software engineering a similar approach is taken: Inte-
grated Development Environments (IDE) support software engineers in the
entire software life cycle – blending specification, design, implementation,
component integration, debugging, testing and maintenance into a tightly in-
tegrated, interactive environment. More recently, people have been looking
at ways to bring the benefits of rigorous software engineering methodologies
to end-users [Burnett, Cook & Rothermel, 2004; Burnett, Engels, Myers &
Rothermel, 2007]. A similar integral approach has also been suggested by
[Hardman, Obrenovic, Nack, Kerhervé & Piersol, 2008] for tools used in the
media production chain. This chapter adopts a similar end-user software engi-
neering approach to allow end-users to control the entire content life cycle of
intelligent shop window ambient narratives in an easy and efficient way. Be-
fore the underlying system architecture and its components are discussed in
detail, the ambient narrative content life cycle is seen from an end-user point
of view.

6.1 An end-user software engineering approach 121

6.1.1 Intelligent shop window life cycle scenario
To illustrate the ambient narrative life cycle we consider the intelligent shop
window scenario. The designer will start off with an intelligent shop window
installation that does not yet exist in the real shop. The designer therefore
first needs to create a 3D model of the shop and the shop window. If the
designer has finished constructing this 3D model of the shop using 3D mod-
elling software in his office, he can import this model into the 3D simulation
environment. He is then ready to add virtual sensors and actuators in the 3D
environment that correspond with the real sensors and actuators used by the
intelligent shop window system in the real store. If we assume the designer
has taken these steps, he is ready to create the intelligent shop window ambient
narrative using a visual editor that is connected to the 3D simulation environ-
ment as shown in Figure 6.1 (top left). The designer can test the behavior
of the virtual intelligent shop window and simulate how the real intelligent
shop window will appear and behave. The 3D simulation can be seen as a
visual debugging tool as it enables the designer to correct errors in the intel-
ligent behavior. If the designer is satisfied with the result he can show the
simulated intelligent shop window ambient narrative to the store owner for
feedback and make adjustments if needed. If the store owner approves, the
designer can save the ambient narrative and upload it to a Web site or make a
local copy.

Figure 6.1: Intelligent shop window lifecycle scenario

If we assume the operator of the store has set-up the necessary hardware
(physical sensors and actuators) and software for the intelligent shop window
installation, the operator can download the intelligent shop window ambient
narrative from the designer’s Web site and deploy it onto the live system for

122 An End-user Programmable Shop Window System

operational use. Customers can now physically experience the behavior of
the intelligent shop window as was discussed in Section 3.3.1. If the designer
wants to maintain or update the behavior of the ambient narrative he can use a
visual editor connected to the live system. The designer can immediately ex-
perience the effects of his actions in the real world, making it possible to tune
behavior that was difficult to simulate or update the intelligent shop window
ambient narrative to accommodate for changes in the collection or upcoming
events, Figure 6.1 (bottom left).

Figure 6.2: Use case diagram

Figure 6.2 shows the UML use case diagram of the user scenario dis-
cussed above. Using a 3D simulation the designer can explore the virtual
shop window and interact with the 3D environment. The designer can create,
edit and remove beats using a visual editor. The designer and operator use
an exchange tool to upload and download ambient narratives between the 3D
simulation and the live system. The customer explores and interacts with the
live intelligent shop window system.

6.1.2 System architecture
Figure 6.3 presents the system architecture. To ease portability of ambient
narratives (Requirement SE.2) the 3D simulator (Section 6.3) and live sys-
tem share a common run-time system component. This component could be
shared by both systems, blending real and virtual sensors and actuators in
one system, or instantiated separately as in the user scenario above in which
case there need to be two instances of the common run-time system compo-
nent, one connecting to the real sensors and actuators in the physical store, the
other using virtual sensors and actuators in the 3D simulation. The run-time
system component can be further decomposed into the Context Server, Ambi-
ent Narrative Engine and Rendering Engine component. The Context Server
(Section 6.2.1) aggregates and filters raw sensor data from the real or virtual
environment. Important context changes are communicated to the Ambient
Narrative Engine (Chapter 5, Section 6.2.2) that determines which ambient

6.1 An end-user software engineering approach 123

narrative beats need to be activated or deactivated. The action scripts of these
beats are forwarded to the Rendering Engine (Section 6.2.3) that schedules
the device actions in these scripts for rendering. Note that not all sensor data
needs to be fed through the run-time system component, sensors can also be
directly connected to actuators if the sensed data is not needed for determin-
ing the next action in the real or virtual environment and only used locally
by an actuator. The Editor component (Section 6.4) allows the designer to
view and modify the beat database of the Ambient Narrative Engine and view
the context information sensed by the Context Server. The Exchange Server
(Section 6.5) component enables users to import or export the beat database
of the Ambient Narrative Engine.

Figure 6.3: System architecture overview

The decomposition of the run-time system of a ubiquitous computing en-
vironment into sensing, reasoning and rendering components has also been
proposed by others. The context framework for enabling the end user de-
velopment of mobile context-aware applications implemented by [Korpipää,
Malm, Salminen & Rantakokko, 2005] speaks of a context manager, rule
script engine and activator component for sensing, reasoning and rendering,
whereas [Clerckx, Vandervelpen, Luyten & Coninx, 2006] uses the terms con-
text management system, dialog control and distribution manager to refer to
these components. The ambient intelligence platform for physical play dis-
cussed by [Wakkary, Hatala, Lovell & Droumeva, 2005] uses a sensing sys-
tem, reasoning engine and display engine. Service-oriented ubiquitous com-

124 An End-user Programmable Shop Window System

puting frameworks typically view the reasoning and rendering component as a
single application layer that can build on top of services such as data storage,
computing sharing, context management.

6.2 Run-time system
The run-time system provides real-world or simulated sensor input to the beat
sequencing process of the Ambient Narrative Engine and processes its output,
i.e. the resulting device action commands. The run-time system as a whole
implements the following requirements RT.5 (No noticeable difference in per-
formance with a custom-built system), RT.6 (Scalable in terms of sensors and
actuators) and RT.7 (Robust against sensor and actuator failures).

To ensure Requirement RT.5 is satisfied the run-time system should re-
spond in real-time as a tailor-made software application which would offer
the same functionality. The potential bottleneck in the run-time environment
is the central beat sequencing engine. Because this component reacts on sen-
sor changes one way to reduce the system load is to filter out unimportant sen-
sor events as early as possible. Two categories of unimportant sensor events
can be distinguished: Events that will not cause a change in the active beat
set and events that are only locally used by one or more actuators. Events that
belong to the first category will not cause a change in the active beat set. To
determine these events, the Context Server requires knowledge of the active
trigger preconditions. Therefore there are two context models maintained in
the run-time environment, a physical model of (changes in) the physical en-
vironment by the Context Server and a symbolic model of (changes in) the
physical environment by the Ambient Narrative Engine. To deal with events
which are never interpreted centrally, sensors can be coupled directly to the
necessary actuator(s) as shown in Figure 6.3.

To cover a large shop, hundreds of sensors and actuators may be needed
to obtain an accurate and precise model of the actors, props and performances
that take place. The shop window area is typically much smaller so Require-
ment RT.6 can be relaxed. Furthermore, the user-generated ambient narratives
found showed few dependencies between the post-its with beat descriptions.
Therefore it is possible to divide a larger shop up into smaller shop segments,
each having their own instantiation of the run-time system. Alternatively, a
single Ambient Narrative Engine could receive input from multiple context
server each addressing a segment of the shop, and/or on the actuator side, dis-
tribute output over multiple Rendering Engines. For the implementation of
the end-user programmable shop window system, both the run-time system
used by the simulation environment and the live environment only have one

6.2 Run-time system 125

instantiation of each component in the run-time system.
To address Requirement RT.7 the different components in the run-time

system need to reconnect automatically if a sensor or actuator (temporarily)
disappears. This requirement is automatically satisfied for sensors and ac-
tuators if Requirement RT.8 (Plug-n-play actuators) and RT.9 (Plug-n-play
sensors) are met and so will be discussed as part of Sections 6.2.3 and 6.2.1
respectively.

6.2.1 Context Server
The function of the Context Server is to filter and translate physical context
changes into symbolic context changes for the Ambient Narrative Engine. To
implement Requirements RT.1 (React on implicit context changes) and RT.2
(React on explicit user feedback) it is necessary to concentrate on a particular
application domain and determine which types of sensors (and actuators) are
needed. To support the intelligent shop window scenario domain of Section
3.3.1 the following sensors are used:

� Pressure sensitive floor tiles [Tekscan, 2008] in front of the shop win-
dow to identify and track a small number of people simultaneously,
based on the pressure patterns of their feet.

� Ultra-wideband location system [Ubisense, 2008] to identify and track
tagged objects, i.e. actuators and tangible objects of interest.

� Gaze tracking system [SmartEye, 2008] to detect where people are
looking in the shop window.

� Optical touch screens [Ubiq’window, 2008] to detect where people are
pointing on the display in the shop window.

Figure 6.4: Static structure diagram Context Server component

126 An End-user Programmable Shop Window System

User events from the gaze tracking system and optical touch screens sen-
sors to control the interactive shop catalog on the shop window displays are
handled directly by an intelligent shop window actuator (see Section 6.2.3)
and therefore not further discussed here. The implementation of the sensors
falls also outside the scope of this thesis.

Plug-n-play sensors(Requirement RT.9) are not supported by the current
Context Server implementation. It is assumed the pressure sensitive floor and
ulta-wideband location system are fixed in place during operational use as
there is no functionality in the scenario indicating the need for a dynamically
changing sensor infrastructure. Requirement RT.7 (Robust against sensor and
actuator failures) is partially met by making sure the Context Server automat-
ically tries to reconnect to sensors if the connection is lost. Requirement RT.8
(Plug-n-play actuators) is partially met by equipping each (portable) actuator
with a tag that can be detected by the ultra-wideband location system. If this
tag has an identifier that maps onto a prop that is used in the precondition
section of a beat, the author can specify what should happen if a new actuator
enters the stage.

Figure 6.4 shows the context server component in detail. The pressure sen-
sitive floor system is accessed through the SmartFloorServer, the ultra-wide
band location system through the UbisenseServer. The ContextServer creates
a SmartFloorServer and UbisenseServer object to interface with these sensors
to maintain a physical context model. This model implements the functional-
ity needed to support the core ambient narrative language listed in Table 4.1;
i.e. the absolute position and identity of actors and props on stages (presence
performance only). Actors and props in the ambient narrative language model
are both represented by Tag objects. Fixed objects are represented by Virtual-
Tag objects. Each Tag object has a name, role, position and global attribute.
The global flag can be set to indicate that this Tag is part of every defined
Stage. Stages are described by Stage objects. Each Stage has a name and a
set of absolute coordinates that define the area. A Tag can be present on zero
or more Stages simultaneously and each stage object has a name that corre-
sponds with the stage id attribute of a beat in the beat database managed by
the Ambient Narrative Engine.

The ContextServer also instantiates a number of connections to other com-
ponents. The connection with the Ambient Narrative Engine is maintained by
a NarrativeEngineConnection object. The ContextServer also starts an Edi-
torServer and a ContextAccessServer thread to provide an interface to the Ed-
itor and Exchange Server components respectively. Finally the ContextServer
creates a ContextProcessor thread that filters and translates incoming physical
context changes into symbolic context changes. For each Tag position change

6.2 Run-time system 127

the ContextProcessor must notify editors subscribed to the EditorServer so
they can update their visualization of the current context to the user. In addi-
tion, the ContextProcessor must check for each Stage if the Tag has entered or
left this Stage. If a Tag has entered or left a Stage, the Ambient Narrative En-
gine must be notified of this change. Via the EditorServer, the ContextServer
also receives commands from the Editor component to add a new Stage to the
list of Stage objects or remove an existing Stage from this list. If this happens,
the Ambient Narrative Engine component is also notified.

The separation between a physical context model and a symbolic context
model can also be found back in other ambient intelligence systems. The Mid-
dleWhere [Ranganathan, Al-Muhtadi & Chetan, 2004] distributed middleware
infrastructure allows location-sensitive applications to be notified whether a
certain location-based condition becomes true similar to our ContextServer
and also maintains a spatial database to model the physical world that includes
a physical layout of the environment as well as relevant physical objects. The
ContextDistillery system presented in [Fujinami, Yamabe & Nakajima, 2004]
makes a distinction between raw sensor data and more abstract, high-level
context extractors (called distillers). Applications can use both raw sensor
data and abstract high-level context information. In the shop window situa-
tion, the intelligent shop window applications are directly coupled to the gaze
tracking and optical touch screen systems to receive raw sensor data but these
applications are controlled in turn via the Ambient Narrative Engine that uses
symbolic abstract context information described in the preconditions of a beat.

6.2.2 Ambient Narrative Engine
The Ambient Narrative Engine is responsible for calculating the next action in
the physical or virtual environment depending on the available symbolic con-
text information, session state and user feedback and plot material encoded by
an ambient narrative, which can be modified at run-time. The implementation
of this component was discussed in Chapter 5. In this section the interfaces to
other components in the system architecture are discussed.

The interfaces to the Ambient Narrative Engine are depicted graphically in
Figure 6.5. The EventServer waits for incoming requests of clients interested
in sending symbolic context changes or receiving changes in the active beat
set. If a client connects, the EventServer starts a new thread (EventHandler)
to service this client. One of the clients that connects to this EventServer
is the NarrativeEngineConnection of the Context Server. Through the Nar-
rativeEngineConnection symbolic context changes are sent to the Ambient
Narrative Engine. The Editor component connects using the NarrativeEvent-
Controller to the EventServer of the Ambient Narrative Engine to subscribe

128 An End-user Programmable Shop Window System

Figure 6.5: Static structure diagram Ambient Narrative Engine component
(overview)

to changes in the active beat set.
The action scripts in the ‘init’ and ‘main’ sections of the beats that have

been activated and the action scripts in the final section of the beats that have
been deactivated as the result of the beat sequencing process in the Ambient
Narrative Engine are forwarded to the ActionHandler that has a connection
with the ClientServer of the Rendering Engine component.

Clients interested in modifying the beat set (i.e. add, remove or modify
beats) connect using the AuthorServer to the Ambient Narrative Engine. For
each client the AuthorServer starts a new thread (AuthorHandler) to service
this client. The Editor component connects through the AuthoringController
to the Ambient Narrative Engine. The Exchange Server component binds to
an AuthorHandler object using its ExchangeClient.

Remarks
Session state changes are mostly caused by internal changes in the state of
the ambient narrative as a result of story values that are being added or re-
moved in the ‘init’ or ‘final’ sections of beats. Components may also send
story memory changes to influence the session state and beat sequencing pro-
cess by connecting to the EventServer of the Ambient Narrative Engine. In
principle this would allow stateful actuators to set certain variables (and in-
fluence the beat sequencing process) based on the outcome of a device action
command they received from the Rendering Engine component. Although
this functionality is supported, it is not used for two reasons. First, it is not
needed for the functionality of the intelligent shop window scenario. Second,
it makes it harder to debug errors because the undesired behavior can now be

6.2 Run-time system 129

caused by a story value change in one of the beats in the ambient narrative or
in one of the sensors or actuators used by the system (and may not even be
viewed inside!).

Explicit user feedback can similarly be modelled by a session state change
or by a sensor in the Context Server that results in a symbolic context change
forwarded to the Ambient Narrative Engine. For example, if a person presses
a button in a user interface to register himself as being present on a particular
stage that action corresponds to that person being detected by a location sys-
tem on that stage. In other words the difference between explicit user feedback
and implicit user feedback disappears at the symbolic level.

6.2.3 Rendering Engine
The Rendering Engine component takes care of the timing and synchroniza-
tion of actions over multiple devices (Requirement RT.4). For the intelligent
shop window scenario of Section 3.3.1 the following actuators are used:

� PC running a custom-made Flash application that controls what is dis-
played on the transparent holographic rear projection screen [DNP,
2008] hanging in the shop window. This application has three differ-
ent shop window modes that can be set (blank, demo and interact).
Blank mode turns the display black (transparent), demo mode sets a
predefined product presentation slideshow and interact mode sets the
predefined interactive shop catalogue. The gaze tracking system and
optical touch screen connected directly to this application. For each
shop window this set-up is replicated.

� DMX RGB wallwashers [ColorKinetics, 2008] to light up the back
wall. The color and intensity of the light can be set.

� DMX RGB light tiles [ColorKinetics, 2008] for highlighting products
in the shop window. The color and intensity of the light can be set.

� DMX RGB spots [ColorKinetics, 2008] to highlight the mannequins in
the shop window. The color and intensity of the light can be set.

The gaze and touch input is only locally used to control the content on
the shop window so it was decided to bypass the ambient narrative engine to
lower the number of events received.

Figure 6.6 describes the static structure of the Rendering Engine compo-
nent. The RenderingEngine has a DeviceServer, ClientServer and Timer.

The DeviceServer enables actuators to register themselves. Each actuator
that wants to be recognized and used by the Rendering Engine must be sub-
class of Device and register to this DeviceServer. The interface to the PC ap-
plication that controls the shop window is for example described by the Shop-

130 An End-user Programmable Shop Window System

Figure 6.6: Static structure diagram Rendering Engine component

Window class that registers itself with the DeviceServer. After registration an
actuator is ready to receive device action commands. This completes Require-
ment RT.8 (Plug-n-play actuators). Requirement RT.7 (Robust against sensor
and actuator failures) is fully satisfied by making sure not only the sensors
but also the actuators reconnect, in their case to the Rendering Engine if their
connection is temporarily lost.

The ClientServer accepts connection requests from the ActionHandler in
the Ambient Narrative Engine component. For each ActionHandler that con-
nects the ClientServer creates a ClientHandler object to service this client.
The ClientHandler uses the ScriptParser to parse received action scripts. This
creates a list of device action command objects that either need to be added
or removed for rendering. Each Command object has a script name, device
name, action value, action z-order, timestamp and start time attribute. Com-
mand objects are added to or removed from the CommandPool. The Com-
mandPool schedules, orders the device action commands based on the times-
tamps and start times.

The Timer controls the timing of device actions. It periodically checks
the CommandPool for Command objects that need to be activated because
their scheduled start time matches the current time and then sends the value
and z-order of these device action commands to the appropriate actuator for
rendering.

To conclude the discussion on the run-time system component we present
the sequence diagram of handling a symbolic context event by the different
components in the run-time system (Figure 6.7).

6.3 Simulator 131

Figure 6.7: Sequence diagram handling symbolic context change

If the ContextProcessor of the Context Server component has determined
a symbolic context change that needs to be communicated to the Ambient Nar-
rative Engine, the ContextProcessor invokes the sendContextEvent method of
the NarrativeEngineConnection. This method sends an XML message con-
taining the context change to the EventHandler of the Ambient Narrative
Engine that serves this object. The EventHandler parses this message and
calculates the changes on the active beat set as part of the beat sequenc-
ing process. The EventHandler calls the sendActionScript method of the
ActionHandler to send the action scripts to the Rendering Engine. At the same
time the EventHandler notifies all listeners interested in receiving active beat
list changes (not shown further). The ActionHandler sends the action script
as XML message to the ClientHandler of the Rendering Engine that serves
the ActionHandler. The ClientHandler parses the message for device action
commands that need to be scheduled and invokes the updateCmdList method
on the CommandPool object.

6.3 Simulator
The behavior of the intelligent shop window installation can be simulated
with the 3D Simulator component. This component fulfills Requirement SE.1
(Simulation of the behavior of ambient narratives) and also addresses Re-
quirement SE.5 (Debugging the behavior of ambient narratives) because the
3D Simulator enables the designer to correct errors quickly without the need to
test on the shop window system in the shop. Previous work by [Barton & Vi-

132 An End-user Programmable Shop Window System

jayaraghavan, 2003; Shirehjini & Klar, 2005] also reports simulators for ubiq-
uitous computing. Ubiwise [Barton & Vijayaraghavan, 2003] provides both a
first person view of the physical environment using the Quake III Arena game
engine and a close-up view of devices a user may manipulate. Besides their
use for rapid prototyping of context-aware environments, both Ubiwise and
3DSim [Shirehjini & Klar, 2005] offer a context visualization mode where
instead of virtual sensors, real sensors can be used to test the performance
of the sensor hardware. Our Simulator is implemented using the open-source
CrystalSpace [CrystalSpace, 2008] Software Development Kit. This SDK can
be used to create real time 3D graphics and is especially suited for building
games. The focus of this section is on the interface to the run-time system and
the application that uses the CrystalSpace SDK. Figure 6.8 describes the static
structure diagram of the 3D Simulator.

Figure 6.8: Static structure diagram Simulator component

The CrystalSpace Application uses the CS SDK to create a 3D simulation
of ShopLab at the High Tech Campus in Eindhoven where the live intelligent
shop window system is situated. The designer can walk through this 3D en-
vironment by moving his virtual character with the cursor keys and choose
different perspectives to see how the simulated environment appears from dif-
ferent angles as shown by Figure 6.9.

The 3D model of ShopLab and the virtual devices and objects in these
screenshots have been created using 3D Studio Max [Autodesk, 2008] and
imported into custom CS model and scene files. The CS Application loads
these files, creates the 3D world and the implements basic functionality to
navigate and interact with this 3D world. The game logic that defines how
the 3D environment reacts to symbolic events is described by the beats in the
ambient narrative. The compiled source code of the physical layer in the CS

6.3 Simulator 133

Figure 6.9: Screenshots of the 3D simulation of the shop window system

SDK implements the other necessary functionality such as e.g. rendering,
object collision and motion detection support. A similar separation between
game logic and game engine specific functionality is discussed by [BinSubaih,
Maddock & Romano, 2005]. In the remainder of this section we concentrate
on the interface with the ambient narrative run-time system component and
game logic. For more information on the CS physics libraries we refer to the
CS documentation and source code.

To simulate the intelligent shop window scenario, the virtual environment
needs to implement virtual versions of the sensors and actuators that are used
in the real environment. When the CS Application is started, it loads in 3D
models of the actuators and instantiates VirtualDevice objects that can then re-
ceive device action commands from the Rendering Engine. If a VirtualDevice
receives a device action command, it uses the CS libraries to render the effect
of this action in the virtual world, e.g. change the image on the shop window
display as shown in Figure 6.9. Changes in the position of the virtual charac-
ter (actor) and actuators (props) are forwarded by the CS Application to the
VirtualSensor of the Context Server that filters and translates these simulated
physical context changes into symbolic context changes for the Ambient Nar-
rative Engine. The frame rate of the simulation determines how many times
per second changes in the virtual world are communicated.

The combination of virtual sensors and virtual actuators in the 3D Simu-
lator corresponds to the default simulation mode or rapid prototyping mode.
By interacting in the virtual world, virtual sensors detect virtual events that
trigger beats that affect the virtual actuators. In case the virtual sensors are re-
placed by real sensors connected to the live shop window system, an operator
can test the performance of the sensor hardware infrastructure to localize mal-
functioning hardware/software or view in real-time the status of a live shop

134 An End-user Programmable Shop Window System

window system installed somewhere else. The advantage over e.g. security
cameras is that the operator can view the status of the remote live shop win-
dow installation from different angles without affecting the live system. In
the situation of virtual sensors and live actuators the Simulator turns into a
tool for the operator to test actuator hardware or remotely control a live shop
window installation like a puppet master in a puppet theatre play. This has the
advantage that the operator can simulate sensor events such as the emotions
of people that would be hard to detect by a sensor. When both the sensors and
actuators are replaced by real versions the Simulator becomes a visualization
of a live shop window system that cannot be controlled by the operator.

6.4 Editor
Using the Editor component users can modify the behavior of the shop win-
dow ambient narrative. The Editor needs to implement the user interface re-
quirements UI.1 to UI.8. First the design decisions of the user interface are
discussed and the layout and screens of the user interface then the interface of
this component to the other components in the system architecture is discussed
in detail.

6.4.1 User interface
Before users can add or delete beats in an ambient narrative they have to know
what the current state of the ambient narrative is. In order to fulfill requirement
UI.1 (Summary of active and inactive ambient intelligence fragments) the user
should see be able to quickly obtain an overview of currently active and inac-
tive beats and be able to identify them quickly. The difference between active
and inactive fragments must be clear to the user. To improve identification of
beats, each beat can be given a name and a photo can be taken. This photo is
used a thumbnail image in the beat list.

The state of the ambient narrative is determined by the physical context.
To meet requirement UI.2 (Summary of current context situation) the phys-
ical context model maintained by the Context Server must be visualized to
the user. This helps the user to understand what the system is detecting and
quickly figure out if a sensor or actuator is malfunctioning. Active maps that
dynamically update the location of people, places and things have also been
used by e.g. [Li, Hong & Landay, 2004; Barrenho, Romão, Martins & Cor-
reia, 2006] for mobile location-aware services.

Figure 6.10 shows the overview screen. The list of active and inactive
beats is displayed on the right, the overview of the context situation, including
a top-view map of the shop on the left. The user interface shows a number of

6.4 Editor 135

Figure 6.10: Overview screen

beats that are currently active including a beat named InteractionMode1 that
has been selected. The stage, actors and props in the precondition of the se-
lected beat are superimposed over the context situation panel. The advantage
of this connection between the selected beat and the context situation is that
the user can quickly see why a beat might be active or inactive.

In the overview screen the user can choose to add a new beat, edit an
existing beat or delete a beat from the list by pressing one of the buttons on
the right. If the user presses the New button or Edit button the beat screen
appears to edit the (empty) beat. If the user presses the Delete button the user
is asked to confirm this action and the beat is removed from the beat set.

Figure 6.11: Beat screen

The beat screen provides a more detailed overview of the beat. The user
can see a visualization of the beat’s preconditions, the associated device ac-
tions and its name and thumbnail image. Figure 6.11 shows the beat overview
screen if the user has pressed the new button. An empty beat with a new name
is created that has no preconditions, no device actions and no thumbnail im-

136 An End-user Programmable Shop Window System

age defined. If the user selects an existing beat to modify the information in
the beat is used. The user can modify the beat preconditions by left clicking
on the icon next to Context. This brings up the beat precondition screen. The
user can view the associated device actions by left clicking on the icon next
to Timeline. This opens the beat action timeline screen. The user can change
the name and thumbnail image of the beat through the beat description screen
that is accessed by left clicking on the icon next to Description.

Figure 6.12: Beat description screen

If the user is satisfied with the result, the beat can be saved and added to
the beat database in the Ambient Narrative Engine by left clicking on the Save
icon. Should the user wish to undo actions he can always go back to the beat
overview screen by pressing the Home button.

To complete requirement UI.3 (Identification of ambient intelligence frag-
ments) the user must be able to type in a name for a beat and take a photo of
the effects of this beat on its environment. This is done in the beat description
screen, Figure 6.12. The user can change the name AttractorMode and take a
photo by pressing the take photo button that is used as thumbnail image in the
overview and beat screens.

The beat preconditions screen shown in Figure 6.13 implements Require-
ment UI.4 (Overview of ambient intelligence fragment situation) and Require-
ment UI.6 (Control over the activation of ambient intelligence fragments).
Using this screen users are able to view and modify preconditions and thereby
define how a beat is triggered. Visual rule-based approaches for authoring mo-
bile location-aware applications and augmented reality have been described
by [Güven & Feiner, 2003; Sohn & Dey, 2003; Li, Hong & Landay, 2004].
In the 3D authoring environment discussed by [Güven & Feiner, 2003] users
can create locations and associate snippets (media objects with start and end
times, position and other data). iCAP [Sohn & Dey, 2003] allows end-users to

6.4 Editor 137

Figure 6.13: Beat preconditions screen

drag user-defined inputs, outputs, locations and people on a situation area to
construct a rule. An alternative approach is to combine the input and output of
components together as pieces of a puzzle or mashup. This jigsaw metaphor
is used by [Rodden, Crabtree & Hemmings, 2004; Ballagas, Memon, Reiners
& Borchers, 2007; Yahoo, 2008]. Viewing human computer interaction as
theater has been proposed by [Laurel, 1986]. The user is seen as the audience,
the agents in the user interface as actors and the desktop as being the stage.
In [Finzer & Gould, 1993] programming by demonstration is looked at as re-
hearsing a performance. In [Repenning & Sumner, 1994] the authors argues
for a participatory theatre metaphor where the audience, the user is not a pas-
sive observer but an active participant in the play and can choose his level of
engagement.

The beat preconditions screen combines a visual rule-based language with
a participatory theatre metaphor: The user can create or modify a stage by
pressing the selectArea icon on the right. This allows the user to draw a rect-
angle on the map that represents the stage. To add an actor to this stage the
user must press the actor button on the right. This opens the actor screen. To
add a prop to this stage the user can left click on one of the device icons on
the map or open up the prop list screen by pressing the prop button to select
a prop from the list to configure. To set story values that must be tested, the
user must press the depend button to bring up the dependencies screen. If the
user is satisfied with the result he can press the navigation button in the top
right corner to return to the beat screen (and view or save the beat).

The actor screen is used to set restrictions on the name and role of an actor.
The actor screen is opened by pressing the actor button or left clicking on an
existing actor icon on the map in the beat preconditions screen. Figure 6.14
displays the actor screen.

138 An End-user Programmable Shop Window System

Figure 6.14: Actor screen

Figure 6.15: Dependencies screen

The dependencies screen (Figure 6.15) can be used to define which beats
must be active and which beats should not be active for this beat to trigger.
The Topiary storyboard workspace [Li, Hong & Landay, 2004] offers similar
functionality to end-users to create dependencies between defined scenes. In
the intelligent shop window scenario of Section 3.3.1 the product presenta-
tion slideshow is shown unless a person is standing directly in front of one
of the shop windows, in which case the interactive shop catalogue should be
presented and the lighting adapted. To model this behavior the beat that de-
scribes the product presentation slideshow (AttractorMode) must test on the
non-existence of beats that describe what should happen when a customer is
standing in front of one of the shop window displays (InteractionMode4 etc.).
Otherwise both beats would be active simultaneously because both precondi-
tions would be met. This is done by moving beats from the available into the
excluded list in Figure 6.15. Beats that must already be active before this beat

6.4 Editor 139

can be triggered can be moved to the included list.

Figure 6.16: Two ways of selecting and configuring props

The prop list screen is shown in Figure 6.16 (left). The user can choose a
prop in the list to configure a device action and set whether this prop must be
present, i.e. included on the stage and if the prop must be active or not. This
latter option allows the user to test on the non-existence of a prop and trigger
a beat when a device is switched off or taken away. Although the prop list can
be used to configure device actions, it is often easier and faster to left click
directly on a prop on the map in the beat precondition screen to configure it as
shown in Figure 6.16 (right).

Figure 6.17: Prop editors

If a user chooses to configure a prop, the corresponding prop editor is
started. This enables the user to set a device action and its start time and
duration. This fulfills Requirement UI.8 (Control over the action content in
ambient intelligence fragments). Because of the variety between devices and
applications, each prop implements its own device action editor that is loaded
by the main editor when the prop is detected by the system. Figure 6.17
shows two prop editors that are used to compose the intelligent shop window
scenario, one to set the application mode on the shop window display (left),
the other to set a RGB spot light (right).

The beat timeline screen shown in Figure 6.18 fulfills Requirement UI.5
(Overview of ambient intelligence fragment action) and UI.7 (Control over the
timing and synchronization of actions in fragments). In the action timeline the

140 An End-user Programmable Shop Window System

user can see the start and stop times of device action commands in one single
screen and modify these timelines by left clicking on the prop icon. This
brings up the associated prop editor screen to modify the device action. Only
one device action can be set for each device. To preview the device actions
associated to the beat before saving, the user can press the play button at the
right. This functionality is useful in the in-situ authoring environment where a
lighting designer can try out different light settings in the shop without having
to first stand in front of the shop window for example to trigger the beat.

Figure 6.18: Beat timeline screen

Figure 6.19 graphically depicts the navigation structure between the
screens of the editor user interface.

Figure 6.19: User interface flow diagram

6.4.2 System interface
The Editor component and its interface to the Context Server and Ambient
Narrative Engine component is shown in Figure 6.20. The Editor component
implements a standard model-view-controller software architecture pattern.

6.4 Editor 141

The controller part is implemented by the Editor and its helper classes in the
upper part of Figure 6.20. The graphical user interface, view is realized by
the Main class and related classes (lower part Figure 6.20). The beats of the
ambient narrative and physical context model of the Context Server form the
model part, they are visualized and manipulated by the controller through the
user interface.

Figure 6.20: Static structure diagram Editor component

The Editor class starts the authoring tool application. It creates three sepa-
rate threads to listen for changes in the physical context model (ContextEvent-
Controller), changes in the beat set (NarrativeEventController) and changes
in the user interface (InterfaceController). The ContextEventController con-
nects to the EditorServer in the Context Server component to receive phys-
ical context change updates. The NarrativeEventController interfaces to the
EventServer of the Ambient Narrative Engine to be notified of changes in the
active beat set and other beats in the ambient narrative. The Editor main-
tains a local copy of both the physical context model (in a separate Context
object) and this ambient narrative state (inside an NarrativeEventController

142 An End-user Programmable Shop Window System

object). The InterfaceController maintains the state of the user interface and
sends changes to and receives instructions from this user interface. The Inter-
faceController is in control of changing the beat list and map in the overview
screen (Figure 6.10) and instructing the AuthoringController to save a beat
that has been created or modified in the user interface, remove a beat, save a
photo and preview an action script. The AuthoringController connects to the
AuthorServer of the Ambient Narrative Engine and the EditorServer of the
Context Server.

The Main class of the user interface controls the activation of screens and
creates a Network object to send and receive commands from the Interface-
Controller. The overview screen of Figure 6.10 is implemented by Screen-
Main. Changes in either the physical context or beat set are directly forwarded
while the user interface is in this overview screen state. If ScreenMain is ac-
tivated, the context model and beat list are requested through the Network
interface. The InterfaceController then sends the new list and context model.
If the user presses the delete button, the selected beat identifier is sent to the
InterfaceController for removal. The ShopMap and Settings are used to draw
the map of the shop and the stages, props and actors in it. The beat screen
is described by ScreenScene. The SceneDescription is used to parse and se-
rialize a beat document. If the user presses the save button the newly created
or modified beat object is materialized into an XML document that is for-
warded to the InterfaceController to be added or replaced in the beat set. The
ScreenDescription implements Figure 6.12. If the user presses the save photo
button in this screen, the InterfaceController is instructed to save the sequence
of photo pixels into a thumbnail image. The AuthoringController fowards
this data stream to the Ambient Narrative Engine. The beat timeline screen
is described by ScreenTimeline. If the user presses the play button, the action
script object is materialized into an XML document that is fowarded to the
InterfaceController for preview. The stop button is used to retract the previous
script. Figure 6.12 is implemented by the ScreenPreconditions screen. The ac-
tor (Figure 6.14 and dependencies screen (Figure 6.15 are implemented by the
Actor and ScreenDependencies classes respectively. The prop list of Figure
6.16 (left) is realized by the ScreenPropList class. The prop editors shown in
Figure 6.17 are described by PropSpot and PropWindow and are subclasses of
MapIcon. The ScreenPropEditor creates the prop screen and uses the MapI-
con.

To fulfill requirement UI.9 (Plug and write actuators) the prop editor class
URL of an actuator must be added as an attribute to the device Tag informa-
tion that is kept by the Context Server. If a device is detected by the location
positioning system or manually added, the prop editor URL will then be sent

6.4 Editor 143

Figure 6.21: Sequence diagram beat addition

along with the other Tag data to the ContextEventController and the Inter-
faceController. If the user then selects the prop on the map or in the prop list,
the corresponding prop editor class can be loaded. Requirement U.10 (Plug
and write sensors) is not satisfied by the shop window system because the
necessary plug and play functionality has not been implemented. The editor
user interface has been limited to a fixed physical sensor infrastructure. In
a dynamically changing sensor infrastructure situation the user interface must
adapt continuously in order to provide feedback to the user that certain context
situations cannot be detected by the present set of sensors.

To conclude this section we present a detailed description of how a beat
is added to the shop window system. Figure 6.21 shows the UML sequence
diagram of adding a beat. If the InterfaceController receives the instruction
to add a new beat following a save event originating from the beat screen,
the addBeat method on the AuthoringController object is invoked. The Au-
thoringController will serialize the beat object into an XML document that is
handled by an AuthorHandler object in the Ambient Narrative Engine. The
AuthorHandler parses the XML document and creates a beat object that is

144 An End-user Programmable Shop Window System

added to the beat set. The AuthorHandler acknowledges the result of this
operation back to the AuthoringController. If the operation was successful,
an XML message containing the name and coordinates of the stage is for-
warded to the EditorServer of the Context Server. The EditorServer parses
the message and adds the new stage to the list of Stage objects maintained by
the ContextServer class. The new beat can now be triggered as a result of a
context change as was shown in Figure 6.7.

The process of removing a beat from the system is similar to that of adding
a beat, the main difference is that the stage is removed from the Context Server
before the beat itself is removed from the Ambient Narrative Engine. This way
the beat is automatically deactivated as part of the beat sequencing process and
can then be safely removed.

6.5 Exchange Server

Figure 6.22: Web interface to the Exchange Server

Figure 6.22 shows screenshots of the Web interface used to access the
Exchange Server. Using this interface, users can upload or download intel-
ligent shop window ambient narratives in the simulation (left) or live system
(right) and save current and restore earlier made ambient narratives. The Ex-
change Server thereby meets Requirement SE.3 (Versioning of ambient nar-
ratives). To transfer an ambient narrative between the simulation and the live
system, the user first has to download the current ambient narrative using the
Exchange Server that is connected to the run-time system of the 3D Simulator.
This brings up a file save dialog box asking him where the user wants to store
the ambient narrative (e.g. on a shared network drive or portable USB stick).
Next, the user has to switch to the Exchange Server that is connected to the
live run-time system and press the browse button to select the ambient narra-
tive he just saved. He is then ready to upload and use the ambient narrative in

6.5 Exchange Server 145

the live system.
The Exchange Server component and interfaces to the Context Server and

Ambient Narrative Engine components are depicted in Figure 6.23. Through
a Web browser the user accesses the ExchangeClient that is an application
(PHP script) running on a Web server. This ExchangeClient provides a Web
form (Figure 6.22) where users can choose to download or upload an earlier
made ambient narrative. The ExchangeClient maintains a connection to the
ContextAccessServer of the Context Server and the AuthorServer of the Am-
bient Narrative Engine component to import and export ambient narratives in
the run-time system.

Figure 6.23: Static structure diagram Exchange Server component

If the geometry of the virtual world and real world match both the simu-
lation and live environment can use the same physical context model used by
the Context Server after scaling: In the shop window system implementation,
the virtual 3D model is a scaled copy of the original building plan and there-
fore virtual coordinates can be translated into the real world physical context
model that is used as the reference model. This situation corresponds with the
case of an individual shop where the 3D simulation will be build to match the
real world situation as closely as possible and this includes the geometry of the
space. If the geometries are not similar two different physical context models
need to be used. This occurs e.g. in a chain of shops where the geometry of
the individual shops is likely to be different.

To download an ambient narrative, both the beat set of the Ambient Narra-
tive Engine and the Stage list table of the Context Server need to be exported
and saved to disk. The Tag list table of the Context Server does not need
to be included as this part of the physical context model is automatically re-
freshed with new sensor data. The Stage list must be included because it
contains physical context information that is associated with the beat set (Sec-
tion 6.2.1). The ExchangeClient uses the AuthorServer to retrieve the beat
files and the ContextAccessServer to fetch the stage list. The run-time system
is temporarily stopped during this action to prevent inconsistencies between

146 An End-user Programmable Shop Window System

the stage list and beat set. The stage list files and beat files are packaged in a
zip file.

Uploading an ambient narrative involves a number of steps. First the run-
time system is paused to prevent changes in the beat set by other clients during
the uploading process. Second, the Context Server is instructed to remove all
tags from all stages and then removes all stages. This causes the Ambient
Narrative Engine to deactivate all currently active beats, gracefully shutdown
the running applications and effects and return to its default state. Third, the
beats of the new ambient narrative are added. Fourth, the stage list of the
Context Server is replaced by the new stage list. The Context Server forwards
these stage changes to the Ambient Narrative Engine. Finally, the run-time
system is restarted. The ContextProcessor of the Context Server component
checks the Tag list now against the new stage list and forwards the symbolic
context changes to the Ambient Narrative Engine.

Because an ambient narrative encodes how the actuators in the environ-
ment responds to symbolic events that take place in this environment it can be
viewed as the game logic of a game engine as was discussed in Section 6.3.
As described by [BinSubaih, Maddock & Romano, 2005] this game logic is
portable and can be copied from one 3D Simulator to another using the Web
interface to the ExchangeServer. The main purpose of the ExchangeServer
is however to port this game logic to a physical game engine, the Ambient
Narrative Engine component in the run-time system connected to real-world
sensors and actuators.

6.6 Summary
In this chapter we presented the system architecture of an ambient narrative
intelligent shop window prototype that enables retail designers to create, simu-
late, deploy and fine tune interactive multi-sensory shop window experiences.
The architecture consists of a common run-time system component (of which
the ambient narrative engine is a part) that provides an abstraction layer for
sensors and actuators and that facilitates the portability of ambient narratives
between the 3D simulation and the in-situ authoring environment. In addi-
tion it consists of an editor for creating and an exchange server component for
versioning and deploying ambient narratives.

7
Evaluation

In the previous chapters the functionality provided by the end-user software
engineering environment for writing intelligent shop window ambient narra-
tives has been evaluated by building an actual prototype system. Although
this implementation tells us something about the feasibility of our approach,
more detailed analysis and further evaluation is needed to validate our pro-
posed solution. In this chapter we revisit the prototype system and look at it
from different angles.

Section 7.1 discusses the goals, set-up, method and results of a user study
conducted to evaluate the usability of the system and find out to which de-
gree end-users are able to design ambient intelligent shop windows using this
system. Section 7.2 analyzes the technical feasibility, the strengths and weak-
nesses of the current system architecture by observations of use. The extensi-
bility and generality of the prototype ambient narrative system and authoring
environment are the topics in Section 7.3. Conclusions are presented in Sec-
tion 7.4.

7.1 User evaluation
In evaluating the usability of a newly developed interactive application, the
new application is typically compared with an application which already ex-
ists. This application provides the baseline that is used to measure the degree

147

148 Evaluation

of improvement of the new system over the old one. In the absence of an ear-
lier version, the ambient narrative prototype system cannot be benchmarked
against such an earlier version. To test the usability of the prototype system
it is therefore necessary to define evaluation criteria that capture the most im-
portant aspects on which we want to judge the usability of the system. The
collected statistical data that is presented in this section should be interpreted
qualitatively.

In [Resnick, Myers, Nakakoji & Shneiderman, 2005] a number of design
principles are presented to guide the development of end-user programming
environments. Among these guidelines for the design of creativity support
tools is the criteria that an effective tool should have a low threshold, high
ceiling and wide walls. Low threshold means that an effective tool should
offer an interface that gives novice users the confidence that they can succeed
in using the tool. High ceiling means that the tool is powerful enough to work
on increasingly sophisticated projects. Wide walls means that a creativity tool
should support and suggest a wide range of explorations. In other words,
the user should be able to combine the features offered by the tool in many
diverse ways. Because threshold is related to how intuitive a system is in use
and ceiling and walls to the freedom and expressive power a system offers to
its users we can derive two categories in which hypotheses need to be defined
and tested to evaluate the usability of the ambient narrative prototype as a
creativity support tool. A third category is efficiency: For end-users who need
to use creativity tools as part of their everyday job it is important that the tool
is not only intuitive and powerful but also efficient in use.

7.1.1 Hypothesis
The central hypothesis which was formulated as one of the research questions
of this thesis and that needs to be verified in a user study is:

H0 Can end-users design ambient intelligent shop windows using the pro-
totype system?

This hypothesis needs to be decomposed into a number of more specific
hypotheses which fit into the categories of intuitiveness, expressiveness and
efficiency that were defined earlier.

From the interviews and workshops discussed in Section 3.1) we learned
that both retailers, designers and consultants can find themselves in the con-
cept of a shop as interactive, improvisational theatre stage where both shop
employees and customers are engaged in a performance that is partly scripted
and that they could decompose user scenarios or storyboards into theatrical
scenes or beats of an ambient narrative. The authoring tool is designed in

7.1 User evaluation 149

such a way that the first screen users see when they start the application is
an overview of the current context situation and the beats that are currently
present and active in the ambient narrative. As a result we expect that the
following hypothesis will hold:

H1 End-users can easily find an overview of the state of the intelligent shop
window ambient narrative.

Buttons for creating new beats and modifying existing beats are directly
next to the beat overview list. If a user presses one of these buttons he sees the
beat overview screen where he can immediately see the actions and precondi-
tions associated with this beat. During the workshop sessions we discovered
that users placed the emphasis on specifying the desired action of a beat and
paid less attention to the precondition part. We expect users having more dif-
ficulty in setting beat preconditions than beat actions. By following the shop
as theatre metaphor in the precondition screen (define stage, actor, prop) and
navigating users through this screen to add device actions to a beat we force
the user to think about the conditions for activation of his beat. The notion of
timelines used in the action screen is expected to be familiar to these users as
it is commonly used in multimedia authoring tools. The hypothesis we want
to verify is:

H2 End-users find it easy to create and modify the behavior of the intelli-
gent shop window ambient narrative with the editor.

Expressive power is difficult to measure accurately with a user study as
the freedom to express what the user has in mind to the ambient narrative pro-
totype system depends on the sensors and actuators that are used and can be
configured and on the implementation of the formal ambient narrative model.
The intelligent shop window installation implements a small number of sen-
sors and actuators and supports a minimal subset of the formal ambient nar-
rative model of Chapter 3. Section 7.3 provides a more detailed technical
analysis of the limitations that we placed upon ourselves but since users can
only evaluate what they see we expect them to be critical about the possibili-
ties they have to set beat preconditions and device actions:

H3 End-users consider the expressive power of the current system as re-
stricted.

In terms of efficiency we can formulate the following hypothesis:

H4 End-users find the editor efficient in creating and modifying beats both
in the live system and simulation.

150 Evaluation

Users can quickly navigate from the main overview screen to the precon-
dition and action screens to set the preconditions and device actions of a beat.
The editor used on the PDA is identical to the one used for the 3D simulation
so we don’t expect major differences between the two authoring environments
in terms of usability.

7.1.2 Test set-up
The location for the user study was ShopLab which is part of the Experience-
Lab, a usability and feasibility facility of Philips Research at the High Tech
Campus in Eindhoven. ShopLab provides a realistic fashion shop environ-
ment that is used to test what end-users (shoppers, retailers) think about new
retail concepts in an early stage in their natural setting. The intelligent shop
window installation was integrated in the shop window area of ShopLab (Fig-
ure 7.2), the 3D simulation ran on a PC with dual monitors on a desk in a
corner of the area in front of ShopLab (Figure 7.1). Participants were indi-
vidually invited to ShopLab and after a short demonstration of both authoring
environments that was the same for all subjects, each subject was instructed to
perform a number of simple authoring tasks followed by a questionnaire that
asked them to score both environments and allowed them to give feedback.

Figure 7.1: User study setup simulation

7.1.3 Participants
Most of the subjects (13 out of 18) that participated in the user evaluation had
also participated in the interview and workshop sessions. Five participants
were recruited afterwards. The participants had various backgrounds (retail
management, interior design, industrial design, cultural anthropology), dif-
ferent levels of expertise (2-30 years), positions (employee, manager, execu-

7.1 User evaluation 151

Figure 7.2: User study setup live system

tive, owner) and areas of expertise (retailer (27%), designer (35%), consultant
(38%)). The majority of the subjects were Dutch (88%) and male (88%). 72%
of all the participants had a retail background (education and/or experience).
None of the subjects had a background in computer science or software engi-
neering. Available time for the user study forced us to group subjects into one
user category and prevented a more detailed analysis and comparison of the
different types of stakeholders in the retail value chain.

User tasks
Each user had to perform two beat creation and two beat modification tasks
in total. One creation and one modification task to evaluate the 3D simu-
lation end-user programming strategy, the other set of two tasks to validate
the programming on location strategy. The task descriptions are listed below.
The word scene was used as a synonym for beat in the task description and
questionnaire.

T1 Scene modification in simulation: Modify the ‘demo’ scene in the 3D
simulation. Set the light tiles to red. (Verander de ’demo’ scene in de
3D simulatie. Zet de licht tegels (tile sets) allebei op een rode kleur)

T2 Scene creation in simulation: Delete the ‘demo’ scene in the 3D sim-
ulation. Create the following scene in the simulation: When there is
somebody (role customer) standing in front of the first shop window,
set the window to ‘interact’ mode and the wall washer to blue. (Verwi-
jder de ‘demo’ scene uit de 3D simulatie. Maak de volgende scene in de
3D simulatie: Als er iemand (in rol customer) voor het eerste shop win-

152 Evaluation

dow staat, moet het shop window in ‘interact’ mode en de wall washer
een blauwe kleur krijgen.)

T3 Scene modification in-situ: Modify the interaction mode scene of the
third window in the live system. Set the wall washer behind this window
to green. (Verander de interactie mode op het derde shop window in het
live systeem. Geef de wall washer achter dit scherm een groene kleur.)

T4 Scene creation in-situ: Delete all scenes in the live system. Create the
following scene in the simulation: When there is somebody (role cus-
tomer) standing in front of the right most shop window, set the window
to ‘interact’ mode and the wall washer to red. (Verwijder alle scenes
uit het live systeem. Maak de volgende scene in het live systeem: Als
er iemand (in rol customer) voor het eerste shop window staat, moet
het shop window in ‘interact’ mode en de wall washer een rode kleur
krijgen.)

Procedure
To ensure all test subjects had the same prior knowledge a fixed procedure was
followed: First, the intelligent shop window experience was demonstrated to
participants by physically walking and interacting in front of the real shop
window displays and seeing the shop windows react. The ambient narrative
that described the behavior the participants experienced implemented the sce-
nario described in Section 3.3 and was the same for all subjects.

After showing the user experience to people, the portable device with the
editor to change the behavior of the live shop window was shown to partic-
ipants. Subjects were told that the shop window behavior was composed of
individual scenes that they could modify, delete and create. The features of
the editor were then explained one by one (scene overview, current context
situation overview, scene creation, scene modification, scene deletion, setting
preconditions, setting device actions, setting scene name/taking a photo snap-
shot) by demonstrating a scene modification task that was the same for all
participants and showing the effects in the live environment.

Third, participants were introduced to the 3D simulation set-up. Subjects
were asked to imagine themselves being in the role of a designer sitting in the
office to create the behavior of an intelligent shop window. The visualization
features of the 3D simulation environment were demonstrated to participants
starting with an empty ambient narrative (navigating around in the 3D envi-
ronment; nothing happens). After this step the features of the editor were
explained by demonstrating a fixed scene creation task and showing the result
in the 3D simulation.

7.1 User evaluation 153

After this instruction, subjects were asked to switch places and perform
the tasks that were described in the previous section by themselves. The or-
der in which the participants had to complete these tasks was the same for
all (T1,T2,T3,T4). Help was only given by the instructor (who was always
present during the test) if a participant could not find a particular feature or
was really stuck what to do next. Participants could do the experiment at their
own pace.

Finally, participants were asked to give a score to 12 multiple choice ques-
tions related to intuitiveness, expressiveness and efficiency:

Q1 How clear did you find it to get an overview of the scenes present?
Hoe duidelijk vindt u het om een overzicht te krijgen van de scenes die
aanwezig zijn?

Q2 How easy did you find it to modify existing scenes? Hoe makkelijk
vindt u het om bestaande scenes te wijzigen?

Q3 How easy did you find it to create new scenes? Hoe makkelijk vindt u
het om nieuwe scenes te maken?

Q4 How simple did you find it to set context restrictions for scenes (stage,
actor, prop preconditions)? Hoe eenvoudig vindt u het om context situ-
aties voor scenes (stage, actor, prop beperkingen) in te stellen?

Q5 How simple did you find it to set actions for scenes? Hoe eenvoudig
vindt u het om acties voor scenes in te stellen?

Q6 Does the system give you enough freedom to set scene preconditions
(stage, actor, prop restrictions)? Geeft het systeem u genoeg keuzevri-
jheid om de precondities van scenes (stage, actor, prop beperkingen) in
te stellen?

Q7 Does the system give you enough freedom to set scene actions? Geeft
het systeem u genoeg keuzevrijheid om de acties van scenes in te stellen?

Q8 Does the system give you enough freedom to set the content of actions?
Geeft het systeem u genoeg keuzevrijheid om de inhoud (content) van
de acties van scenes in te stellen?

Q9 What do you think of the number of steps to modify existing scenes
in the simulation? Wat vindt u van het aantal stappen om bestaande
scenes in de simulatie te wijzigen?

Q10 What do you think of the number of steps to modify existing scenes
in the live system? Wat vindt u van het aantal stappen om bestaande
scenes in het live systeem te wijzigen?

154 Evaluation

Q11 What do you think of the number of steps to create new scenes in the
simulation? Wat vindt u van het aantal stappen om nieuwe scenes in de
simulatie te creëren?

Q12 What do you think of the number of steps to create new scenes in the
live system? Wat vindt u van het aantal stappen om nieuwe scenes in
het live syteem te creëren?

Each multiple choice question had a scale from 1 to 5. In the intuitiveness
category, questions ranged from 1: very difficult (zeer ingewikkeld (on the
left of the scale) to 5: very easy (zeer eenvoudig). In the efficiency category,
questions ranged from 1: very inefficient (zeer onefficient (on the left of the
scale) to 5: very efficient (zeer efficient). The questions in the expressiveness
category varied between 1: very insufficient (zeer onvoldoende) to 5: very
sufficient (zeer voldoende). Question Q1 was aimed at testing hypothesis H1.
Questions Q2, Q3, Q4 and Q5 were asked to verify hypothesis H2, questions
Q6 to Q8 to test hypothesis H3 and questions Q9 to Q12 to test hypothesis H4.
Next to the multiple choice questions we asked them to give their comments
about the intuitiveness, expressiveness and efficiency of the system.

7.1.4 Results
Intuitiveness
The mean scores for the questions in the intuitiveness category are depicted
in Figure 7.3: How clear did you find it to get an overview of the scenes
present (Q1)? (Mean:3.73,St.Dev.:0.88). How easy did you find it to modify
existing scenes (Q2)? (Mean:4.00,St.Dev.:0.53) How easy did you find it to
create new scenes (Q3)? (Mean:4.33,St.Dev.0.49) How simple did you find it
to set context restrictions for scenes (stage, actor, prop preconditions) (Q4)?
(Mean:3.8,St.Dev.:0.94) How simple did you find it to set actions for scenes
(Q5)? (Mean:4.4,St.Dev.:0.51)

In terms of ease of use, people seemed to have more difficulty in setting the
preconditions of a scene in terms of stage, actor and prop restrictions than with
setting the action of a device but found the system intuitive as a whole. This
confirms hypothesis H1 and H2. Two participants mentioned in the interview
afterwards it was easy to set device actions. One participant commented that
the user interface had few options which was something he liked. Aspects that
were mentioned that could be improved were the navigation and zoom buttons
to center quickly to the shop window area and buttons to open the precondition
and action screens. Many participants tried to click on the precondition or ac-
tion screen in the scene overview screen which did not work. Two participants
also remarked that the tool had too much flexibility and suggested a wizard for

7.1 User evaluation 155

Figure 7.3: Mean scores for questions on ease of use. Horizontal axis shows
the five questions asked. Error bars show minimum and maximum scores.

setting preconditions or restrict the user interface to providing only a single
way to set device actions (i.e. clicking on a device). Participants recognized
that the editor used in the 3D simulation and live system were identical when
asked what they found easy and difficult in the live system.

Expressiveness
Figure 7.4 shows the mean scores for the questions in the expressiveness
category: Does the system give you enough freedom to set scene pre-
conditions (stage, actor, prop restrictions) (Q6)? (Mean:3.93,St.Dev.:0.46)
Does the system give you enough freedom to set scene actions (Q7)?
(Mean:3.87,St.Dev.:0.83) Does the system give you enough freedom to set
the content of actions (Q8)? (Mean:3.2,St.Dev.:0.94)

Participants were generally satisfied with the possibilities we showed them
in terms of setting stage, actor and prop constraints and setting scene actions.
This result was surprising because we had expected them to be far less for-
giving (and we would have rejected hypothesis H3). The only aspect that was
rated considerably less was the possibility to set the content of actions. We
had no built-in editor or import function to change the content on the shop
window display so people could only choose between presets. Among the
many improvements and extra features that could be added (more sensors,
more actuators, dynamic light colour effects) this ability to modify the con-
tents (graphics and text) on the window was most mentioned.

156 Evaluation

Figure 7.4: Mean scores for questions on expressive power and freedom of
choice. Horizontal axis shows the three questions asked. Error bars show
minimum and maximum scores.

Efficiency
The mean scores in the efficiency category are depicted in Figure 7.5: What
did you think of the number of steps to modify existing scenes in the simu-
lation (Q9)? (Mean:3.40,St.Dev.:0.82) What did you think of the number of
steps to create new scenes in the simulation (Q10)? (Mean:3.53,St.Dev.:0.83)
What did you think of the number of steps to modify existing scenes in the live
system (Q11)? (Mean:3.87,St.Dev.:0.64) What did you think of the number of
steps to create new scenes in the live system (Q12)? (Mean:3.87,St.Dev.:0.64)

With respect to efficiency the scores were slightly lower than the scores
for intuitiveness but hypothesis H4 is still confirmed (well above average
scores). To select the context situation screen from the scene overview screen
we placed an icon in the top of the scene overview screen. This icon would
maximize the preconditions screen, but all participants tried to click directly
on the context area in the scene overview screen to bring up the preconditions
screen. Other aspects mentioned afterwards in the interview is that designers
would like to set device actions for multiple devices at the same time, and
the limitation that there was no undo button. Another comment participants
made is that they first had to save the scene before seeing the effect appear.
Instead the icons in the context overview screen could show some animation
or colour.

7.2 System performance discussion 157

Figure 7.5: Mean scores for questions on efficient use. Horizontal axis shows
the four questions asked. Error bars show minimum and maximum scores.

7.2 System performance discussion
For a period of two weeks the prototype was intensively tested on its real-time
performance by demonstrating it to the visitors of a yearly internal research
exhibition. Like the monolithic system, the modular system responded cor-
rectly and in real-time to changes in context situations. However when peo-
ple caused scenes to switch very quickly (e.g. by standing in between two
different interactive zones in front of the shop windows) the ambient narra-
tive engine component could not keep up with the speed of context changes
resulting in delays and device actions that would lag behind. The underly-
ing reason was the asynchronous event mechanism that would calculate the
new state after each logical context change. The problem can be corrected
by implementing a synchronous eventing mechanism in the ambient narrative
engine that divides logical events in fixed time slots or frames and recalcu-
lates the ambient narrative state at the end or beginning of each frame. Such
a mechanism is also needed if we want to check on time or date in the beat
preconditions.

The performance of the overall system is dependent on the hardware sen-
sors and embedded software being used. The editor component showed a
correct real-time overview of the physical context and did not cause perfor-
mance problems but measuring errors in the UWB location positioning sys-
tem could sometimes cause tags to appear and disappear in unexpected places
in some cases. The performance of the sensor infrastructure can be improved
by monitoring for abnormal sensor events (e.g. using domain knowledge) and

158 Evaluation

duplicating sensors (e.g. extra sensors of the same type but using a different
underlying technology). The shop window system used two different location
positioning systems to track people in front of the shop window as the UWB
signal was reflected by the shop window displays.

The timing and synchronization of device actions caused no problems for
the intelligent shop window scenario but could raise issues when video and
music should be synchronized over different devices. The rendering engine
component does not synchronize device clocks as discussed in [Doornbos,
Clout & Ten Kate, 2003].

Finally, in setting up the prototype system we were reminded that detect-
ing bugs in distributed systems can be a difficult and time consuming process.
Well-structured software engineering practices and interactive applications to
test individual components help to control the complexity.

7.3 Cross-domain application discussion
The expressive power of the ambient narrative intelligent shop window archi-
tecture is difficult to evaluate with a user study. Users can only provide feed-
back on the functionality and interface of the working prototype. Users cannot
know if certain functionality is unavailable because it is supported by the sys-
tem architecture but not implemented in the evaluation system or unsupported
by the system architecture (and not implemented). This section starts a dis-
cussion about the generality of the prototype system and the limitations that
we placed upon ourselves.

7.3.1 Adding new actuators
With the regard to the output side of the system architecture, there are few
compromises made by the prototype system. Writing new actuators requires
programming skills but once they have been written and conform to the inter-
face and protocol of the rendering engine component and can be detected by
the context server, no modification is needed in the system architecture. Once
a new actuator has been written and tested, it can be reused as part of many ap-
plications and different domains and configured by end-users. The prototype
system can therefore easily be extended with different types of luminaires,
software applications and all kinds of other output devices.

One of the challenges in writing such actuators is to find the right balance
between generality and level of detail. If an actuator is highly generic, there is
a risk that it will take the user too much time to configure device actions, if the
actuator is very specific, the user may feel restricted. In the intelligent shop
window prototype the actuators that control the shop window displays are ap-

7.4 Conclusions 159

plication specific whereas the luminaire actuators are more generic. By leav-
ing the level of abstraction up to actuator developers, the system architecture
can support a wider variety of applications and a larger group of end-users.
Novice users may choose more specific actuators that can be configured, ex-
pert users will opt for more general actuators than can be programmed.

7.3.2 Adding new sensors
The strongest limitations of the prototype system with respect to generality
can be found at the input side and in the partial implementation of the formal
ambient narrative model by the ambient narrative engine. The closer we move
towards the full ambient narrative model of Chapter 4, the more finegrained
the context situations and preconditions that can be scripted and the more
diverse applications can be written by end-users. In the prototype system
gaze and touch interaction is for example not under control of the ambient
narrative engine (and not supported by the editor) and this prevents end-users
from declaring a rule that says that when a person is e.g. looking at product X
in the shop window, light tile Y will be illuminated.

Adding new sensors is more complicated than adding actuators because
it affects the context server, ambient narrative engine and editor components
of the system architecture. The context server is affected because it must
filter and sense more and other types of physical context data (time, orien-
tation, touch, gaze relations between objects). The ambient narrative engine
is affected because this results in new logical context changes and new pre-
condition checks that must be implemented. Finally, the editor must be made
aware of the sensor infrastructure and the capabilities of individual sensors for
setting preconditions.

The more detailed the preconditions and actions that can be scripted, the
more scripts may be needed to implement behavior and the more difficult the
authoring task can become for the end-user. If a sensor fails or is removed,
the user might still be able to define certain context situations, but the system
should give feedback that this situation can never be detected with the current
set of sensors.

7.4 Conclusions
In this chapter we investigated the ambient narrative prototype from a usabil-
ity, performance and extensibility angle.

From the user study we conclude that users found both the 3D simulation
and in-situ authoring environment intuitive in use and could create and modify
scenes in the prototype system without much difficulty. Overall participants

160 Evaluation

were also satisfied with the possibilities the editor offered to them, but did see
room for additional features. This result was somewhat surprising to us as we
did not expect participants to accept the limited functionality offered by the
editor. In terms of efficiency users rated the prototype slightly lower than in
terms of intuitiveness but in general we conclude participants were satisfied
with the tool’s efficiency. Based on this outcome we therefore confirm the
main hypothesis: End-users are able to design ambient narratives using this
system.

Through observations of the system in use we draw the conclusion that
the system performance meets the real-time response requirement and com-
parison with a monolithic system but can be improved in a number of areas,
most notably the event handling of the ambient narrative engine.

Finally with respect to the system architecture and its extensibility to other
types applications and application domains we conclude that the largest com-
promises to cross domain application are made by the fixed sensor infras-
tructure assumed by the editor and the partial implementation of the formal
ambient narrative model in the prototype system.

8
Conclusions and Future Work

This last chapter first presents a summary of the conclusions reached in the
thesis and then discusses open issues and suggestions for future work.

8.1 Conclusions
This thesis addressed the problem of deriving an organizing concept that cap-
tures the way in which we form experiences in our everyday life and integrates
interactive ambient media into that process. It proposed the design of an end-
user software engineering environment that enables end-users, i.e. retailers
and designers, to create, deploy and maintain their own smart retail environ-
ments described in this general interaction concept to lower the total costs of
creating, deploying and maintaining ambient intelligent environments.

In order to derive such a general interaction concept we started in Chapter
2 by analyzing the social-cultural and economical factors that shape the Am-
bient Intelligence landscape to understand better how ambient intelligence ex-
actly supports people in performing their everyday life activities. We learned
that performance and play are not only found in the theatre but can be seen
all around us as we perform (often unconsciously) culturally defined social
scripts that we have learned through experience. Social interaction itself can
be seen as an improvised performance, shaped by the environment and the au-
dience. We discussed the emergence and trends in the experience economy

161

162 Conclusions and Future Work

towards multi-sensory co-creation environments and applied literary semi-
otics theory to describe the interaction between people and the environment
in which they perform their social cultural scripts on a more abstract level.
This led us to the ambient narrative interaction concept as a spatial-temporal
multi-sensory interactive narrative consisting of interrelated media-enhanced
social script fragments that are simultaneously read and rewritten by the per-
formance of actor(s) (human or machine) and ambient intelligence as the part
of the emerging story in an ambient narrative as the result of the collective
performance of actors that is conveyed through the set of user interfaces of the
devices surrounding the actors in the environment. In addition we provided
genre classifications of ambient narratives based on the type of experience and
service application domain.

To work towards a concrete system design that can be evaluated with real
end-users the decision was made to concentrate on retail and intelligent shop
window environments (Chapter 3). Through a series of interviews and work-
shops conducted with retailers, designers and consultants, where we asked
participants to design their own interactive retail experience, we learned that
people can decompose user scenarios into individual scenes consisting of a
social script and device action(s), giving us the confidence that they could
think in the ambient narrative mental model. As part of the interviews we pro-
posed four different strategies to compose scenes and found out that designers
had a preference for a 3D simulation scenario in which they could create and
test scenes behind a PC in their office, while retailers found programming in-
situ using a PDA more appropriate and useful for finetuning previously made
scenes. Based on this result we decided to implement both authoring strategies
and support both target user groups and improve the workflow between these
different stakeholders in one end-user software engineering environment. The
user-generated retail ambient narratives and results of a literature study were
combined and analyzed for requirements to be placed on an ambient narra-
tive system with authoring support for smart retail environments. This re-
sulted in a list of thirty functional requirements (Table 3.2), grouped into four
categories: ambient narrative concept implementation, run-time system per-
formance, end-user authoring support and system extensibility. We also pre-
sented an intelligent shop window scenario as a carrier application to evaluate
the ambient narrative concept in practice.

Based on the ambient narrative concept and run-time system performance
functional requirements, we introduced a formal description of the problem of
reconstructing ambient intelligence from the modular fragments (beats) in an
ambient narrative in Chapter 4. Each beat consists of a preconditions part (so-
cial script) and an action part (associated device action(s)). The author of an

8.1 Conclusions 163

ambient narrative can add or remove triggers or context-aware queries in the
action part to control which beats in the ambient narrative can be activated at a
particular moment. We defined a hypertext model to represent beats and made
a distinction between a core model, sufficient to implement the intelligent
shop window scenario, and a model that could describe all the user-generated
ambient narratives we collected. We described how beats are sequenced by
an ambient narrative engine based on physical context information and ses-
sion/story state into a coherent story or ambient intelligent experience. First
the special case of a static set of beats was discussed followed by a formal
description for the more general case of a dynamically changing collection of
beats to support experience co-creation environments such as end-user pro-
gramming environments where end-users can create, modify or delete beats
during run-time.

The beat sequencing algorithm implemented by the ambient narrative en-
gine in Chapter 5 essentially consists of three main steps: updating state,
action selection and action rendering. After each logical context change or
change in story state (updating state step), the narrative engine must check
which active beats have become invalid and update the active beat set if
needed. The narrative engine then has to determine whether new beats need
to be activated by checking the preconditions of the currently active triggers.
Because the (de)activation of beats can affect the story state and influence the
beat sequencing process, a beat sequence iteration only stops when no new
beats are activated or existing beats deactivated (action selection step). We
provided guidelines how to prevent race conditions that might occur. At the
end of a beat sequence iteration the active beat set is compared with the previ-
ous iteration and the actions of the beats that have changed during an iteration
are communicated to the rendering engine that controls the timing and syn-
chronization of device actions over the devices in the intelligent environment
(action rendering step). The algorithm to modify the beats of an ambient
narrative at run-time essentially changes the underlying hypertext graph by
adding or removing triggers to control the activation of beats and then calcu-
lates which beats need to be (de)activated in a modified version of the beat
sequencing algorithm.

The remaining set of functional retail requirements was used to shape the
system architecture of an intelligent shop window system that supports the
entire lifecycle of ambient narratives. We identified six main components
in this end-user software engineering and run-time environment in Chapter
6: context server, ambient narrative engine, rendering engine, editor, simu-
lator and exchange server. The context server maintains a physical context
model by aggregating and filtering raw sensor data. It also forwards events

164 Conclusions and Future Work

to the ambient narrative engine that may cause changes in its logical context
model. The ambient narrative engine uses the beat sequencing algorithm out-
lined above to determine which beats should be rendered next by the render-
ing engine. The editor component implements the user interface to visualize
the state of the intelligent shop window environment and provides the func-
tionality for the designer to modify scenes. The simulator provides the 3D
visualization interface to simulate the behavior of ambient narratives. This
component reused the same run-time environment as the live system but re-
placed the real sensors and actuators with virtual ones. This way differences
between the live system and simulator can be localized back to the sensors
and actuators. The exchange server component offered support for versioning
and uploading/downloading ambient narratives to a central repository.

In Chapter 7 we performed a user study to evaluate the usability of the
authoring environment, an observation-in-use test to assess the run-time per-
formance of the prototype system and a technical analysis to expose the lim-
itations we placed upon ourselves by restricting ourselves to the intelligent
shop window application. In the user study we asked participants with a retail
or design background to complete four tasks using the two different authoring
environments and assess the system on its intuitiveness, expressiveness and ef-
ficiency. In terms of intuitiveness the results showed that people could easily
find an overview of the state of the intelligent shop window ambient narrative
and had no significant trouble in creating and modifying the behavior of the
intelligent shop window ambient narrative with the editor. With respect to
the expressive power the current implementation offered, people were satis-
fied but saw many improvements, in particular the need to be able to modify
the text and graphics of the modes that could be chosen for the shop window
displays. A similar story held true for the efficiency of the editor. Through
observations of the system in use we drew the conclusion that the system per-
formance meets the real-time response requirement and comparison with a
monolithic system but can be improved in a number of areas, most notably
the event handling of the ambient narrative engine. With respect to the system
architecture and its extensibility to other types of applications and application
domains we conclude that the largest compromises to cross-domain applica-
tion are made by the fixed sensor infrastructure assumed by the editor and the
partial implementation of the formal ambient narrative model in the prototype
system.

Finally, this thesis provides answers on the four research questions stated
in Section 1.3.1. The first question we formulated was how we can represent
ambient intelligent environments in general in a way that facilitates mass cus-
tomization. The answer to this question was given in Section 2.3.3 where we

8.2 Suggestions for future work 165

defined the ambient narrative concept and showed how people create their own
personal mixed reality story or ambient intelligent experience from modular
fragments. The second research question dealt with the ability of end-users
to understand the ambient narrative concept and the requirements placed by
these users on the design of an ambient narrative system that can easily be
programmed by end-users. This question was answered by Chapter 3. The
third research question of what a system to control the lifecycle of an ambient
narrative shop window environment should look like is answered by Chapter 6
that describes and explains the system architecture. This system architecture
incorporates the ambient narrative engine component formally described in
Chapter 4 and implemented in Chapter 5. The fourth research question raised
was whether our end-users would be able to design intelligent shop window
applications using such a system. The user study in Section 7.1 provides the
answer to this question.

8.2 Suggestions for future work
Many improvements can be made on the ambient narrative concept itself and
the implementation of the system architecture and end-user software engineer-
ing environment. In the next sections we discuss six different directions for
future work:

� 3D visualization

� dynamic sensor infrastructure

� semi-automatic generation of beats

� end-user debugging

� ambient narrative concept

8.2.1 3D visualization
Creating a realistic 3D model of an existing store may require a large amount
of effort, depending on the size of the store and level of detail desired. 3D
modelling software can make this job easier but still requires much manual
effort by the designer.

A semi-automatic approach demonstrated by [Van den Hengel, Dick,
Thormählen & Ward, 2007] is to generate realistic 3D models of objects from
video by sketching the shape of the object over one or more frames of a video
and then applying computer vision techniques to interpret and transform these
2D sketches into 3D models. A designer could create a video of the shop
first and then generate 3D models of interesting objects in the shop using this
technology that can be placed in the virtual shop. 3D models of actuators

166 Conclusions and Future Work

such as electronic LCD displays, luminaires etc. could also be quickly cre-
ated this way, but this 3D model does not describe the effect of the actuator
on the environment. The effect of the virtual actuator on the virtual environ-
ment must therefore still be programmed manually afterwards by a software
engineer. One solution is to build a common library of virtual actuator effects
that a designer could choose from and associate with a generated 3D model,
but it could be interesting to see whether the effect of a real actuator on its
surroundings could be automatically extracted and summarized from a video
and transformed into a virtual effect in a virtual environment to make the 3D
simulation more realistic.

Another area of improvement is the 3D rendering in itself: The more re-
alistic the light rendering in the virtual world, the less need to modify scenes
in the live system afterwards because the lighting in the 3D simulation dif-
fered from the real world. Further research into computer graphics is needed
to enable real-time cinematic quality 3D rendering.

8.2.2 Dynamic sensor infrastructure
In the current system architecture, new actuators who register themselves with
the rendering engine and are detected by the context server will automatically
become part of the beat sequencing process and can be programmed by end-
users provided they implement the plug-in interface of the editor.

The physical sensor infrastructure on the other hand is not so easy to mod-
ify in the current prototype (as was discussed in Section 7.3) because knowl-
edge of this sensor infrastructure is maintained and used by the context server,
ambient narrative engine and editor. The current system could be improved by
centralizing this knowledge in a separate component that is being shared by
these components, but this still would not solve the problem of dealing with
unknown new types of sensors. If a new sensor would register itself with the
context server, the sensor should be able to describe itself, in particular how
it can be programmed by end-users, analogous to an actuator that implements
an editor plug-in interface that describes its device actions and how they can
be configured by end-users. Knowledge representation and reasoning meth-
ods could be investigated as used in several context-aware platforms, e.g. see
[Devaraju, Hoh & Hartley, 2007] for an overview, to describe the changing
capabilities of a dynamically evolving physical sensor infrastructure layer.

Another question is how the capabilities of this changing sensor infras-
tructure are articulated to the end-user. If there is, for example, no person
identification sensor available in the sensor infrastructure, the author of the
ambient narrative should be made aware by the user interface that any beat he
tries to define that tests on the name of an actor can never be activated. The

8.2 Suggestions for future work 167

user interface should therefore be adapted based on the sensor infrastructure
model in a similar way as proposed by [Clerckx, Vandervelpen, Luyten &
Coninx, 2006] and visualize the sensor infrastructure, as described in [Opper-
mann, Broll, Capra & Benford, 2006], to give feedback to the user.

The ambient narrative prototype enables an author to copy an ambient
narrative from the 3D simulation to the live system but this functionality is
restricted at the moment to situations where both the physical geometry and
sensor infrastructure of both the source and target location match. It is there-
fore interesting to investigate how an ambient narrative that is made in one
location can be mapped onto another site with a different physical geometry
and sensor infrastructure while preserving the behavior of the original ambient
narrative as much as possible.

8.2.3 Semi-automatic generation of beats
Modelling the behavior of a relatively simple case like the intelligent shop
window scenario requires just a small effort from the user. The level of ef-
fort to design a large, complex ambient narrative that models the intelligent
behavior of an entire shop floor, for example, will however be much higher.
Here we suggest a number of different ways in which beats could be semi-
automatically generated to lower the burden on the author.

One possible approach is to replace fixed action scripts with templates
which have parameters that are filled in at run-time based on context informa-
tion or session state, as discussed in Section 4.1.3. This way the author only
has to write one template to personalize a media presentation on the shop win-
dow based on the name of a user standing in front of it whereas in the current
prototype the author would have to manually write beats for each customer
individually.

Another direction to address this issue is to develop high-level actuators
that themselves generate beats that are inserted in an ambient narrative (and
removed). The user would configure such an actuator using the editor as any
other actuator but be unaware that this actuator also modifies the ambient nar-
rative. The beats created by this actuator would be invisible in the authoring
tool, only the beat that started this high-level actuator would remain visible to
the user.

Software agents that modify an ambient narrative may also learn to adapt
the social scripts of beats created by human users over time, using machine
learning techniques, to make the environment appear more proactive and un-
predictable. In general we believe the initiative for this type of adaptation
should lie with the users of an intelligent environment and not with the sys-
tem itself, but there are exceptions like entertainment type of ambient narra-

168 Conclusions and Future Work

tives where users are confronted with challenges they have to solve in order
to proceed to the next level.

8.2.4 End-user debugging
When ambient narratives grow larger it becomes increasingly difficult for end-
users to understand the behavior of an ambient narrative and correct errors,
in particular in co-creation situations where both human and software agents
dynamically modify beats based on the current state of the ambient narrative.

One improvement over the current editor would be an option for the user
to ask the system why a particular scene is (not) active at a particular time. An
example of this approach is the Whyline debugging tool described by [Ko &
Myers, 2004]. Another direction would be to explore the use of hierarchical
layers in ambient narratives and hiding detailed information about the state of
the ambient narrative to novice users.

More research on methods and techniques to understand the complexity
of their applications and trace back errors in the design is needed to deal with
dynamically changing co-creation environments.

8.2.5 Ambient narrative concept
The ambient narrative concept itself is also worth more attention. One possi-
ble area of future work is to look at scalability and distributed ambient narra-
tives. There is a maximum to the number of events that can be processed in
a single time frame by a single ambient narrative engine. One way to address
this scalability issue is to divide a large space up into smaller segments, each
covered by one engine. The larger the space covered by a single ambient nar-
rative engine, the more sensors will typically be connected to its context server
and the more logical context changes the ambient narrative engine will have
to process in turn. This effectively creates a computer grid with a distributed
context model and raises the question of how to share narrative state between
engines so that users do not know they are switching from one computer to
another in the grid.

In setting up the two authoring environments we “accidentally” coupled
the output of the 3D simulation to the output of the live system and were able
to control the live system through the simulation. Another direction for future
work would be to explore different ways of connecting the I/O of simulated
and/or live ambient narratives to each other and see what type of applications
are enabled.

The final question we raise is of a more philosophical nature. Will the
study of computer science into virtual and mixed reality worlds create a new
kind of physics science? Experimental physics tests new theories on nature

8.2 Suggestions for future work 169

itself to deepen our understanding of how the world around us behaves. By
building and experimenting with ever increasingly detailed and more powerful
virtual and mixed reality environments, computer science may help to increase
our knowledge about nature in a bottom-up constructionist way. Perhaps one
day the artificially created realities may have disappeared into the background
of our everyday life, so much integrated in our way of living that we simply
take them for granted and forget how life was without them.

References

Papers and book chapters
� M. van Doorn, A.P. de Vries and E. Aarts, “End-user Software Engi-

neering of Smart Retail Environments: The Intelligent Shop Window”,
Proceedings of the Second European Conference on Ambient Intelli-
gence, Nürnberg, Germany, November 2008.

� M. van Doorn, E. van Loenen, and A.P. de Vries, “Deconstructing Am-
bient Intelligence into Ambient Narratives: Intelligent Shop Window”,
Proceedings of the First International Conference on Ambient Media
and Systems, Quebec, Canada, February 2008, pp. 1-8.

� M. van Doorn, E. van Loenen, and A.P. de Vries, “Performing in Ambi-
ent Narratives: Supporting Everyday Life Performances with Technol-
ogy”, The Drama Review, Volume 51, Number 4, Winter 2007, pp.68-
79.

� E. van Loenen, M. van Doorn, T. Lashina, K. van Gelder, V. Teeven, R.
van Haasen, W. de Bruijn, chapter Interactive Shop Windows in Am-
bient Lifestyle: From Concept to Experience (eds. E. Aarts and E.
Diederiks), BIS Publishers, 2006, pp. 199-202.

� M. van Doorn and A.P. de Vries, “Co-creation in Ambient Narratives”,
Ambient Intelligence for Everyday Life, Lecture Notes in Computer Sci-
ence 3964, 2006, pp. 103-129.

� M. van Doorn, R. van Kranenburg, and T. Smalec, “Performance Stud-
ies Discussion New York University”, Contact Quarterly, Vol.31, No.1,
Winter/Spring 2006, pp.50-53.

� M. van Doorn, “Inside Story on the Experience Economy”, Euro-
pean Centre for the Experience Economy website, February 2006
http://www.experience-economy.com/2006/02/20/inside-story-on-the-
experience-economy-by-mark-van-doorn-philips-research/

� M. van Doorn and A.P. de Vries, “Co-creation in Ambient Narratives”,
Proceedings of the Workshop Ambient Intelligence for Everyday Life,
San Sebastian, Spain, July 2005, pp.137-148.

171

172 References

� M. van Doorn and A.P. de Vries, “Mass Customization in Ambient Nar-
ratives”, Proceedings of the Philips Conference on Internet Technology,
Eindhoven, The Netherlands, December 2004.

� H. ter Horst, M. van Doorn, W. ten Kate, N. Kravtsova and D. Siahaan,
“Context-aware Music Selection Using the Semantic Web”, Proceed-
ings of the 14th Belgium-Netherlands Conference on Artificial Intelli-
gence, Louvain, Belgium, October 2002, pp. 131-138.

Patent applications
� M. van Doorn and E. van Loenen, “Game Logic Portability between

Virtual and Real-world Game Engines”, filed 2008.

� M. van Doorn, “In-situ End-user Programming of Intelligent Environ-
ments Using Smart Tags”, filed 2007.

� M. van Doorn, “Device and Method for Controlling a Lighting System
by Proximity Setting of a Spotlight Control Device”,WO-2008001277.

� M. van Doorn, “Method for Programming by Rehearsal”, WO-
2007034455.

� M. van Doorn, “A Data Processing System and a Method of Operating
a Rendering Platform”, WO-2007026321.

� T. Lashina, G. Hollemans, E. van Loenen, S. van de Wijdeven, K. van
Gelder, M. van Doorn and V. Buil, “Light Feedback on Physical Object
Selection”, WO-2007141675

� M. van Doorn, “System and Method for Creating Artificial Atmo-
sphere”, WO-2007069143.

� M. van Doorn, “Activity-related Document Management”, WO-
200605929.

� M. van Doorn, “System, Apparatus and Method for Augmented Reality
Glasses for End-user Programming”, EP20060795660.

� M. van Doorn, “Controlling Application Devices Simultaneously”,
WO-2003058575.

Bibliography

5W!TS [2007], Tomb Experience, Boston, http://www.5-wits.com/.
AARSETH, E. [1997], Cybertext: Perspectives on Ergodic Literature, Johns

Hopkins University Press.
AARTS, E., R. HARWIG, AND M. SCHUURMANS [2002], Ambient Intelli-

gence, in: P. Denning (ed.), The Invisible Future, McGraw-Hill, 235–
250.

AARTS, E., AND S. MARZANO (eds.) [2003], The New Everyday: Views on
Ambient Intelligence, 010 Publishers.

ABOWD, G., C. ATKESON, J. HONG, S. LONG, AND R. KOOPER [1997],
Cyberguide: A Mobile Context-aware Tour Guide, Wireless
Networks 3, 421–433.

ABRAS, C., D. MALONEY-KRICHMAR, AND J. PREECE [2004], User-
Centered Design, in: W. Bainbridge (ed.), Encyclopedia of Human-
Computer Interaction, Berkshire Publishing Group.

ADOBE [2008], Adobe Flash Professional, http://www.adobe.com/.
APPLE [2008], iDVD, http://www.apple.com/ilife/idvd/.
ARGNET [2008], Alternate Reality Gaming Network, http://www.argn.com/.
AUTODESK [2008], 3D Studio Max, website, http://www.autodesk.com.
AZUMA, R. [1999], Mixed Reality: Merging Real and Virtual Worlds, Chap-

ter The Challenge of Making Augmented Reality Work Outdoors, 373–
390. Springer-Verlag.

BALLAGAS, R., F. MEMON, R. REINERS, AND J. BORCHERS [2007],
iStuff Mobile: Rapidly Prototyping New Mobile Phone Interfaces
for Ubiquitous Computing, Proceedings of the ACM Conference on
Human Factors in Computing Systems, San Jose, USA, 1107–1116.

BARON, P. [2006], Location-based Mobile Phone Games,
www.in-duce.net/archives/locationbased mobile phone games.php.

BARRENHO, F., T. ROMÃO, T. MARTINS, AND N. CORREIA [2006], InAu-
thoring Environment: Interfaces for Creating Spatial Stories and Gam-
ing Activities, Proceedings of the ACM International Conference on
Advances in Computer Entertainment Rechnology, Hollywood, Cali-
fornia, 9.

173

174 Bibliography

BARTON, J., AND V. VIJAYARAGHAVAN [2003], UBIWISE, A Ubiquitous
Wireless Infrastructure Simulation Environment, HP Technical Report,
http://www.hpl.hp.com/techreports/2003/HPL-2003-93.html.

BATES, J., A. LOYALL, AND W. REILLY [1991], Broad Agents, Sigart Bul-
letin 2, 38–40.

BAUDRILLARD, J. [1985], Distinction: a Social Critique of the Judgment of
Taste, translated by Richard Nice, Harvard University Press.

BAUDRILLARD, J. [1995], Simulacra and Simulation, University of Michi-
gan Press.

BEISER, V. [2006], Bagdad, USA, Wired 14,
http://www.wired.com/wired/archive/14.06/iraq.html.

BELL, M., M. CHALMERS, L. BARKHUUS, M. HALL, AND S. SHERWOOD

[2006], Interweaving mobile games with everyday life, Proceedings
of the ACM Conference on Human Factors in Computing Systems,
Montreal, Quebec, Canada, 417–426.

BIERZ, T. [2006], Interaction Technologies for Large Displays - An
Overview, in: H. Hagen, A. Kerren, and P. Dannenmann (eds.), Vi-
sualization of Large and Unstructured Data Sets, Lecture Notes in In-
formatics 4, Springer.

BINSUBAIH, A., S. MADDOCK, AND D. ROMANO [2005], Game Logic
Portability, Proceedings of the International ACM Conference on Ad-
vances in Computer Entertainment Technology, Valencia, Spain, ACM,
458–461.

BITNER, J. [1992], Servicescapes: The Impact of Physical Surroundings on
Customers and Employees, Journal of Marketing 54, 69–82.

BJÖRK, S., J. HOLOPAINEN, P. LJUNGSTRAND, AND K. AKESSON [2002],
Designing Ubiquitous Computing Games A Report from a Workshop
Exploring Ubiquitous Computing Entertainment, Personal Ubiquitous
Computing 6, 443–458.

BLACKWELL, A., AND R. HAGUE [2001], AutoHAN: An Architecture for
Programming the Home, Proceedings of the IEEE 2001 Symposia on
Human Centric Computing Languages and Environments (HCC’01),
150–157.

BLEEKER, J. [2006], A Manifesto for Networked Objects Cohabit-
ing with Pigeons, Arphids and Aibos in the Internet of Things,
http://www.nearfuturelaboratory.com/files/WhyThingsMatter.pdf.

BLOW, J. [2004], Game Development: Harder Than You Think, ACM
Queue 1, pp. 28–37.

BOEHM, B. [1988], A Spiral Model of Software Development and Enhance-
ment, IEEE Computer 21, 61–72.

Bibliography 175

BOJE, D., T. ADLER, AND J. BLACK [2005], Theatrical Façades and Agents
in a Synthesized Analysis from Enron Theatre: Implications to Trans-
action Cost and Agency Theories, Tamara: Journal of Critical Post-
modern Organization Science 3, 39–56.

BOJE, D., J. LUHMAN, AND A. CUNLIFFE [2003], A Dialectic Perspective
on the Organization Theatre Metaphor, American Communication
Journal 6, 1–16,
http://acjournal.org/holdings/vol6/iss2/articles/boje.htm.

BOSWIJK, A., T. THIJSSEN, AND E. PEELEN [2007], The Experience Econ-
omy: A New Perspective, Pearson Education.

BOWEN, J., AND S. FILIPPINI FANTONI [2004], Personalization and the
Web from a Museum Perspective, Proceedings of Museums and the
Web, Archives & Museum Informatics.

BRAND, S. [1995], How Buildings Learn: What Happens After They’re Built,
Penguin.

BRUSILOVSKY, P. [1996], Methods and Techniques of Adaptive Hypermedia,
User Modeling and User-Adapted Interaction 6, 87–129.

BURKE, K. [1966], Language as Symbolic Action: Essays on Life, Literature
and Method, Berkeley: University of California Press.

BURNETT, M., C. COOK, AND G. ROTHERMEL [2004], End-user software
engineering, Communications of the ACM 47, 53–58.

BURNETT, M., G. ENGELS, B. MYERS, AND G. ROTHERMEL (eds.)
[2007], End-User Software Engineering, 18.02. - 23.02.2007,
Dagstuhl Seminar Proceedings 07081, Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany.

CAMERON, A. [1995], Dissimulations: The Illusion of Interactivity, Mille-
nium Film Journal 28, 33–47.

CAO, H., P. OLIVIER, AND D. JACKSON [2008], Enhancing Privacy in Pub-
lic Spaces Through Crossmodal Displays, Social Science Computer
Review 26, pp. 87–102.

CARROLL, J. (ed.) [1995], Scenario-Based Design: Envisioning Work and
Technology in System Development, John Wiley & Sons, Inc., New
York, NY, USA.

CARSON, D. [2000], Environmental Storytelling: Creating Immersive
3D Worlds Using Lessons Learned From the Theme Park Industry,
http://www.gamasutra.com/features/20000301/carson pfv.htm.

CAVAZZA, M., J. LUGRIN, D. PIZZI, AND F. CHARLES [2007], Madame
Bovary on the Holodeck: Immersive Interactive Storytelling, Proceed-
ings of the 15th ACM Conference on Multimedia, Augsburg, Germany,

176 Bibliography

651–660.
CHANDLER, D. [2001], Semiotics: The Basics, Routledge.
CHATMAN, S. [1978], Story and Discourse: Narrative Structure in Fiction

and Film, Ithaca: Cornell University Press.
CHATWIN, B. [1988], The Songlines, Pinguin Books.
CHEN, H., F. PERICH, AND D. CHAKRABORTY [2004], Intelligent Agents

Meet Semantic Web in a Smart Meeting Room, Proceedings of the
Third International Joint Conference on Autonomous Agents and Mul-
tiagent Systems, Washington, DC, USA, IEEE Computer Society, 854–
861.

CHEOK, A., K. GOH, WEI LIU, F. FARBIZ, S. FONG, AND S. TEO [2004],
Human Pacman: A Mobile, Wide-area Entertainment System based
on Physical, Social, and Ubiquitous Computing, Personal Ubiquitous
Computing 8, 71–81.

CHEVERST, K., N. DAVIES, K. MITCHELL, AND A. FRIDAY [2000], De-
veloping a Context-aware Electronic Tourist Guide: Some Issues and
Experiences, Proceedings of the ACM Conference on Human Factors
in Computing Systems, The Hague, The Netherlands, 17–24.

CHING, F. [1996], Architecture: Form, Space and Order 2nd edition, Wiley.
CHU, T-Y. LIU; T-H. TAN; Y-L. [2006], The Ubiquitous Museum Learn-

ing Environment: Concept, Design, Implementation, and a Case Study,
Proceedings of the Sixth IEEE Conference on Advanced Learning Tech-
nologies, 989–991.

CLARK, T., AND I. MANGHAM [2004], From Dramaturgy to Theatre as
Technology: The Case of Corporate Theatre, Journal of Management
Studies 41, pp. 37–59.

CLERCKX, T., C. VANDERVELPEN, K. LUYTEN, AND K. CONINX [2006],
A Task-driven User Interface Architecture for Ambient Intelligent En-
vironments, Proceedings of the 11th ACM Conference on Intelligent
User Interfaces, Sydney, Australia, 309–311.

CMIL [2008], Contextual Media Integration Language (CML),
http://www.oacea.com/cmil/.

COLORKINETICS [2008], Philips Solid State Lighting Systems,
http://www.colorkinetics.com/.

CRYSTALSPACE [2008], CrystalSpace Game Engine, website,
http://www.crystalspace3d.org.

CSERKUTI, P., T. LEVENDOVSZKY, AND H. CHARAF [2006], Survey on
Subtree Matching, Proceedings of the International Conference on In-
telligent Engineering Systems, 39, 216–221.

CSIKSZENTMIHALYI, M. [1990], Flow: The Psychology of Optimal Experi-

Bibliography 177

ence, New York: Harper and Row.
CYPHER, A. [1993], Watch What I Do: Programming by Demonstration,

MIT Press.
DATABASE OF VIRTUAL ART [2008], Database of Virtual Art,

http://www.virtualart.at.
DAVENPORT, G., AND M. MURTAUGH [1997], Automatist Storyteller Sys-

tems and the Shifting Sands of Story , IBM Systems Journal 36, 446–
456.

DAVIS, S. [1987], Future Perfect, Reading.
DE BRA, P., G-J. HOUBEN, AND H. WU [1999], AHAM: A Dexter-based

Reference Model for Adaptive Hypermedia, Proceedings of the 10th
ACM Conference on Hypertext and Hypermedia, Darmstadt, Germany,
147–156.

DE OLIVEIRA, N., N. OXLEY, AND M. PETRY [2004], Installation art in the
New Millennium: Empire of the Senses, London: Thames & Hudson.

DERTOUZOS, M. [1999], The Future of Computing, Scientific American 281,
52–55.

DEVARAJU, ANUSURIYA, SIMON HOH, AND MICHAEL HARTLEY [2007],
A Context Gathering Framework for Context-aware Mobile Solutions,
Proceedings of the 4th International Conference on Mobile Technology,
Applications, and Systems, Singapore, 39–46.

DEVMASTER [2008], DevMaster’s Game and Graphics Engines Database,
http://www.devmaster.net/engines/.

DEY, A., R. HAMID, AND C. BECKMANN [2004], a CAPpella: Program-
ming by Demonstration of Context-aware Applications, Proceedings
of the ACM Conference on Human Factors in Computing Systems, New
York, NY, USA, 33–40.

DIDIER, J., O. HESS, AND M. LUTYENS [2007], House-Swarming, Art
Center College of Design, Pasadena,
http://www4.alzado.net/edintro.html.

DIEDERIKS, E., AND H. HOONHOUT [2007], Radical Innovation and End-
user Involvement: The Ambilight Case, Journal of Knowledge, Tech-
nology & Policy 20, 31–38.

DNP [2008], DNP Holo Screen, http://www.en.dnp.dk/get/472.html.
DOORN, M. VAN, AND A.P. DE VRIES [2006], Co-creation in Ambient Nar-

ratives, Ambient Intelligence for Everyday Life, Lecture Notes in Com-
puter Science 3964, Springer-Verlag, 103–129.

DOORNBOS, R., R. CLOUT, AND W. TEN KATE [2003], Media Processing
Abstraction Layer (MAL) Protocol Specification, Technical Report PR-
TN-2003/00477, Philips Research.

178 Bibliography

DOW, S., M. MEHTA, E. HARMON, B. MACINTYRE, AND M. MATEAS

[2007], Presence and Engagement in an Interactive Drama, Pro-
ceedings of the SIGCHI conference on Human Factors in Computing
Systems, San Jose, California, USA, ACM, 1475–1484.

DRAPER, S., D. NORMAN, AND C. LEWIS [1986], Introduction, in: D. A.
Norman and S. W. Draper (eds.), User Centered System Design: New
Perspectives on Human-Computer Interaction, Erlbaum, 1–6.

ECLIPSE [2008], Eclipse: An Open Development Platform,
http://www.eclipse.org.

EDVARDSSON, B., B. ENQUIST, AND R. JOHNSTON [2005], Cocreating
Customer value through Hyperreality, Journal of Service Research 8,
pp. 149–161.

ELIASSON, O. [2003], Weather Project, Tate Modern, London,
http://www.tate.org.uk/modern/exhibitions/eliasson/default.htm.

ERICKSON, T. [1996], The World Wide Web as Social Hypertext, ”View-
points” in Communications of the ACM 39, 15–17.

EVES, D., R. COLE, AND D. CALLAWAY [2008], Ambient Environment Ef-
fects, WO/2008/007293.

EXIST [2008], eXist Open Source Native XML Database,
http://exist.sourceforge.net/.

FINZER, W., AND L. GOULD [1993], Rehearsal world: Programming by Re-
hearsal, 79–100, Cambridge, MA, USA, MIT Press.

FISHER, W. [1989], Human Communication as Narration: Toward a Phi-
losophy of Reason, Value, and Action, Columbia: University of South
Carolina Press.

FISK, R., AND S. GROVE [1992], The Service Experience as Theater, Ad-
vances in Consumer Research 19, 455–461.

FISK, R., AND P. TANSUHAJ [1985], Services Marketing: An Annotated Bib-
liography, American Marketing Association.

FOGARTY, J., J. FORLIZZI, AND S. HUDSON [2001], Aesthetic Information
Collages: Generating Decorative displays that Contain Information,
Proceedings of the 14th ACM Symposium on User Interface Software
and Technology, New York, NY, USA, 141–150.

FOWLER, M. [2003], UML Distilled: A Brief Guide to the Standard Object
Modeling Language (3rd Edition), Addison-Wesley.

FUJINAMI, K., T. YAMABE, AND T. NAKAJIMA [2004], ”Take Me With
You!”: A Case Study of a Context-aware Application Integrating Cyber
and Physical Spaces, Proceedings of the ACM Symposium on Applied
Computing, Nicosia, Cyprus, 1607–1614.

GALYEAN, T. [1995], Narrative Guidance of Interactivity, Ph.D. thesis, MIT

Bibliography 179

Media Lab.
GARDNER, W., AND B. AVOLIO [1998], The Charismatic relationship: A

Dramaturgical Perspective, Academy of Management Review 23, 32–
58.

GEPHNER, D., J. SIMONIN, AND N. CARBONELL [2007], Gaze as a Sup-
plementary Modality for Interacting with Ambient Intelligence Envi-
ronments, Universal Access in Human-Computer Interaction. Ambient
Interaction, Lecture Notes in Computer Science 4555, Springer.

GLYNN, R. [2008], Interactive Architecture Weblog,
http://www.interactivearchitecture.org.

GOβMANN, J., AND M. SPECHT [2002], Location models for augmented en-
vironments, Personal Ubiquitous Computiung 6, 334–340.

GOFFMAN, E. [1959], The Presentation of Self in Everyday Life, Doubleday:
Garden City.

GOTTDIENER, M. [2001], The Theming of America, Westview Press.
GRAU, O. [2003], Virtual Art: From Illusion to Immersion, MIT Press.
GRØNBÆK, K., PETER ØRBÆK, J. KRISTENSEN, AND M. ERIKSEN

[2003], Physical Hypermedia: organising collections of mixed
physical and digital material, Proceedings of the 14th ACM Conference
on Hypertext and Hypermedia, Nottingham, UK, 10–19.

GRØNBÆK, K., P. VESTERGAARD, AND P. ØRBÆK [2002], Towards Geo-
Spatial Hypermedia: Concepts and Prototype Implementation, Pro-
ceedings of the 13th Conference on Hypertext and Hypermedia, Mary-
land, USA.

GROVE, S.J., AND R.P. FISK [1983], Emerging Perspectives on Services
Marketing, Chapter The Dramaturgy of Services Exchange: An Ana-
lytical Framework for Services Marketing, 45–9. American Marketing
Association.

GROVE, S., R. FISK, AND M. LAFORGE [2004], Developing the Impres-
sion Management Skills of the Service Worker: An Application of
Stanislavskys Principles in a Services Context, The Service Industries
Journal 24, 1–14.

GÜVEN, S., AND S. FEINER [2003], Authoring 3D Hypermedia for Wear-
able Augmented and Virtual Reality, Proceedings of the 7th IEEE Inter-
national Symposium on Wearable Computers, Washington, DC, USA,
IEEE Computer Society, 118.

HALASZ, F., AND M. SCHWARTZ [1994], The Dexter Hypertext Reference
Model, Communications of the ACM 37, 30–39.

HANSEN, F., N. BOUVIN, B. CHRISTENSEN, AND K. GRØNBÆK [2004],
Integrating the Web and the World: Contextual Trails on the

180 Bibliography

Move, Proceedings of the 15th ACM Conference on Hypertext and
Hypermedia, Santa Cruz, USA, 98–107.

HARDMAN, L., D. BULTERMAN, AND G. VAN ROSSUM [1994], The Am-
sterdam Hypermedia Model: Adding Time and Context to the Dexter
Model, Communications of the ACM 37, 50–64.

HARDMAN, L., Z. OBRENOVIC, F. NACK, B. KERHERVÉ, AND K. PIERSOL

[2008], Canonical Processes of Semantically Annotated Media Pro-
duction, Multimedia Systems 14, 327–340.

HARRIS, R., K. HARRIS, AND S. BARON [2003], Theatrical Service Expe-
riences: Dramatic Script Deployment with Employees, International
Journal of Service Industry Management 14, 184–199.

HARTMANN, B., L. ABDULLA, AND M. MITTAL [2007], Authoring
Sensor-based Interactions by Demonstration with Direct Manipulation
and Pattern Recognition, Proceedings of the ACM Conference on
Human Factors in Computing Systems, San Jose, USA, 145–154.

HENGEL, A. VAN DEN, A. DICK, T. THORMÄHLEN, AND B. WARD

[2007], VideoTrace: Rapid Interactive Scene Modelling From Video,
SIGGRAPH ’07, San Diego, USA, ACM, 86.

HEUVEL, H. VAN DE [2007], Context Awareness in Ambient Intelligence
Surroundings, Master thesis, Technical University of Eindhoven.

HORN, M., AND R. JACOB [2006], Tangible Programming in the Classroom:
A Practical Approach, Extended Abstracts of the 23rd ACM Conference
on Human Factors in Computing Systems, New York, NY, USA, 869–
874.

HORST, H. TER, M. VAN DOORN, N. KRAVTSOVA, AND W. TEN KATE

[2002], Context-aware Music Selection Using Knowledge on the Se-
mantic Web, Proceedings of the 14th Belgium-Netherlands Conference
on Artificial Intelligence, 131–138.

HTML [2008], HTML 4.01 Specification, http://www.w3.org/TR/html4/.
HUMBLE, J., A. CRABTREE, AND T. HEMMINGS [2003], ”Playing with the

Bits” User-Configuration of Ubiquitous Domestic Environments, Pro-
ceedings of the 5th IEEE Conference on Ubiquitous Computing, 256–
263.

HYDROPOLIS [2008], Hydropolis Underwater Hotel,
http://www.designbuild-network.com/projects/Hydropolis/.

IBM RETAIL [2008], How Immersive Technology Can Revitalize the Shop-
ping Experience, Technical Report,
http://www-03.ibm.com/industries/retail/index.jsp.

IZADI, S., M. FRASER, S. BENFORD, AND M. FLINTHAM [2002], City-
wide: Supporting Interactive Digital Experiences Across Physical

Bibliography 181

Space, Personal Ubiquitous Computing 6, 290–298.
JOHN, J., S. GROVE, AND R. FISK [2006], Improvisation in Service Perfor-

mances: Lessons from Jazz, Managing Service Quality 16, 247–268.
KANG, H., B. BEDERSON, AND B. SUH [2007], Capture, Annotate,

Browse, Find, Share: Novel Interfaces for Personal Photo Management,
International Journal of Human-Computer Interaction 23, 315–337.

KELLEHER, C., AND R. PAUSCH [2005], Lowering the Barriers to Program-
ming: A Taxonomy of Programming Environments and Languages for
Novice Programmers, ACM Computer Surveys 37, 83–137.

KESSELS, A. [2006], Intelligent Shop Window: Interaction Styles and Feed-
back Mechanisms, Master thesis, Technical University of Eindhoven.

KINDBERG, T., J. BARTON, AND J. MORGAN [2002], People, Places,
Things: Web Presence for the Real World, Mobile Network Appli-
cations 7, 365–376.

KLINGMANN, A. [2007], Brandscapes: Architecture in the Experience Econ-
omy, MIT Press.

KO, A., AND B. MYERS [2004], Designing the whyline: A debugging inter-
face for asking questions about program behavior, Proceedings of the
ACM Conference on Human Factors in Computing Systems, Vienna,
Austria, 151–158.

KORPIPÄÄ, P., E. MALM, I. SALMINEN, AND T. RANTAKOKKO [2005],
Context Management for End User Development of Context-aware
Applications, Proceedings of the 6th ACM Conference on Mobile Data
Management, Ayia Napa, Cyprus, 304–308.

KOSAK, D. [2005], Will Wright Presents Spore... and a New Way to Think
About Games,
http://www.gamespy.com/articles/595/595975p1.html.

KOZINETS, R., J. SHERRY, B. DEBERRY-SPENCE, AND A. DUHACHECK

[2002], Themed Flagship Brand Stores in the New Millenium: Theory,
Practice and Prospects, Journal of Retailing 78, 17–29.

KROGH, P. [2000], Interactive rooms - augmented reality in an architectural
perspective, Designing Augmented Reality Environments, 135–137.

LAUREL, B. [1986], Toward the Design of a Computer-Based Interactive
Fantasy System, Ph.D. thesis, Ohio State University.

LAUREL, B. [1993], Computers as Theatre, Addison-Wesley.
LAZEROMS, M. [2002], Intelligent Personal Care Environment - The Bath-

room Cares for You, http://www.research.philips.com/technologies
(Mirror Display).

LE CORBUSIER [1960], Towards a New Architecture, Vitruvius.
LEGO [2008], Lego Factory, http://factory.lego.com/.

182 Bibliography

LEGRADY, G. [2000-2002], Sensing Speaking Space, Museum of Modern
Art, San Francisco,
http://channel.creative-capital.org/project 78.html.

LI, Y., J. HONG, AND J. LANDAY [2004], Topiary: A Tool for Prototyping
Location-enhanced Applications, Proceedings of the 17th ACM Sym-
posium on User Interface Software and Technology, Santa Fe, USA,
217–226.

LIEBERMAN, H. [2001], Your Wish Is My Command: Programming by Ex-
ample, Morgan Kaufman.

LINDEN LABS [2008], Second Life: Your World, Your Imagination,
http://secondlife.com.

LOENEN, E. VAN, T. LASHINA, AND M. VAN DOORN [2006], Ambient
Lifestyle: From Concept to Experience, Chapter Interactive Shop Win-
dows, 199–202. Amsterdam:Bis Publishers.

LOHR, S. [2006], Apple, a Success at Stores, Bets Big on Fifth Avenue, New
York Times, May 19.

LOZANO-HEMMER, R. [2004], Vectorial Elevation, Sky Above Dublin,
http://www4.alzado.net/edintro.html.

MAES, P. [1989], How To Do The Right Thing, Connection Science Jour-
nal 1, 291–321.

MAGERKO, B. [2002], A Proposal for an Interactive Drama Architecture,
Artificial Intelligence and Interactive Entertainment, 76–81.

MARTIN, W. [1986], Recent Theories of Narrative, Cornell University Press.
MATEAS, M., AND A. STERN [2003], Façade: An Experiment in Building

a Fully-Realized Interactive Drama, Game Developer’s Conference:
Game Design Track, San Jose, California.

MAYHEW, D. [1999], The Usability Engineering Lifecycle: A Practioner’s
Handbook for User Interface Design, Morgan Kaufmann.

MCGONIGAL, J. [2003], This Is Not a Game: Immersive Aesthetics and
Collective Play, Proceedings of the Digital Arts & Culture Conference,
110–118.

MCHUGH, J. [2006], The Great Escape, Wired 14,
http://www.wired.com/wired/archive/14.03/lafuga.html.

MCKEE, R. [1997], Story: Substance, Structure, Style and The Principles of
Screenwriting, Regan Books.

MCNERNEY, T. [2004], From Turtles to Tangible Programming Bricks: Ex-
plorations in Physical Language Design, Personal Ubiquitous Com-
puter 8, 326–337.

MEADOWS, M. [2002], Pause and Effect: The Art of Interactive Narrative,
New Riders Publishers.

Bibliography 183

MICROSOFT [2008], Visual Studio,
http://msdn.microsoft.com/en-us/vs2008/default.aspx.

MILLARD, D., D. DE ROURE, D. MICHAELIDES, AND D. THOMPSON

[2004], Navigational Hypertext Models For Physical Hypermedia
Environments, Proceedings of the 15th ACM conference on Hypertext
and Hypermedia, Santa Cruz, USA, 110–111.

MONTEMAYOR, J., A. DRUIN, AND G. CHIPMAN [2004], Tools for Chil-
dren to Create Physical Interactive Storyrooms, Computers in Enter-
tainment 2, 12–12.

MOTT, B., AND J. LESTER [2006], U-director: A Decision-theoretic Narra-
tive Planning Architecture for Storytelling Environments, Proceedings
of the 5th International Joint Conference on Autonomous Agents and
Multiagent Systems, New York, NY, USA, 977–984.

MURRAY, J. [1998], Hamlet on the Holodeck: The Future of Narrative in
Cyberspace, MIT Press.

NA, J., AND R. FURUTA [2001], Dynamic Documents: Authoring, Brows-
ing, and Analysis using a High-level Petri-net-based Hypermedia Sys-
tem, Proceedings of the ACM Symposium on Document Engineering,
New York, NY, USA, 38–47.

NARDI, B. [1993], A Small Matter of Programming: Perspectives on End
User Computing, MIT Press.

NAVAB, N. [2003], Industrial Augmented Reality: Challenges in Design
and Commercialization of Killer Apps, Proceedings of the Second
IEEE/ACM Symposium on Mixed and Augmented Reality, IEEE/ACM,
2–6.

NEWT GAMES [2003], Mogi,
http://www.mogimogi.com/mogi.php?language=en.

NICKLAS, D., AND B. MITSCHANG [2001], The NEXUS Augmented World
Model: An Extensible Approach for Mobile, Spatially-Aware Applica-
tions, Proceedings of the 7th IEEE Conference on Object-Oriented
Information Systems, 392–401.

NORTON, M., AND B. MACINTYRE [2005], Butterfly Effect: An Aug-
mented Reality Puzzle Game, Proceedings of the 4th IEEE Symposium
on Mixed and Augmented Reality, 212–213.

O’NEILL, E., D. WOODGATE, AND V. KOSTAKOS [2004], Easing the Wait
in the Emergency Room: Building a Theory of Public Information Sys-
tems, Proceedings of the 5th ACM Conference on Designing Interactive
Systems, Cambridge, USA, 17–25.

OPPERMANN, L., G. BROLL, M. CAPRA, AND S. BENFORD [2006], Ex-
tending Authoring Tools for Location-Aware Applications with an In-

184 Bibliography

frastructure Visualization Layer, Ubicomp, 52–68.
OSWICK, C., T. KEENOY, AND D. GRANT [2001], Dramatizing and Orga-

nizing: Acting and Being, Journal of Organizational Change Manage-
ment 14, pp. 218–224.

OWL [2008], Web Ontology Language (OWL),
http://www.w3.org/2004/OWL/.

PELTONEN, P., E. KURVINEN, A. SALOVAARA, AND G. JACUCCI [2008],
It’s Mine, Don’t Touch!: Interactions at a Large Multi-touch Display
in a City Centre, Proceeding of the 26th ACM Conference on Human
Factors in Computing Systems, Florence, Italy, 1285–1294.

PELTONEN, P., A. SALOVAARA, G. JACUCCI, AND T. ILMONEN [2007],
Extending Large-scale Event Participation with User-created Mobile
Media on a Public Display, Proceedings of the 6th ACM Conference
on Mobile and Ubiquitous Multimedia, Oulu, Finland, 131–138.

PERLIN, K., AND A. GOLDBERG [1996], Improv: A System for Scripting
Interactive Actors in Virtual Worlds, Proceedings of the 23rd ACM
Conference on Computer Graphics and Interactive Techniques, New
York, NY, USA, 205–216.

PESCOVITZ, D. [2005], Crappy restaurant, BoingBoing,
http://www.boingboing.net/2005/06/30/crappy-restaurant.html.

PHILIPS [2007], Wake-up Light, http://www.wakeuplight.philips.com/.
PHYSORG [2007], Worlds First Ambient Experience Suite Opens,

http://www.physorg.com/news5443.html.
PINE, J. [1992], Mass Customization: The New Frontier in Business Compe-

tition, Harvard Business School Press.
PINE, J., AND J. GILLMORE [1999], The Experience Economy, Harvard

Business School Press.
PINE, J., AND J. GILLMORE [2007], Authenticity: What Customers Really

Want, Harvard Business School Press.
PINHANEZ, C., K. MASE, AND A. BOBICK [1997], Interval Scripts: A De-

sign Paradigm for Story-based Interactive Systems, Proceedings of
the ACM Conference on Human Factors in Computing Systems, ACM
Press, 287–294.

PRAHALAD, C.K., AND V. RAMASWAMY [2004], The Future of Competi-
tion: Co-creating Unique Value With Customers, Harvard Business
School Press.

PRASOV, Z., AND J. CHAI [2006], Predicting User Attention using Eye Gaze
in Conversational Interfaces, The Third Midwest Computational Lin-
guistics Colloquium, Urbana-Champaign, IL.

QVARFORDT, P., AND S. ZHAI [2005], Conversing with the user based on

Bibliography 185

eye-gaze patterns, Proceedings of the 22th ACM Conference on Human
Factors in Computing Systems, New York, NY, USA, 221–230.

RANGANATHAN, A., J. AL-MUHTADI, AND S. CHETAN [2004], Middle-
Where: A Middleware for Location Awareness in Ubiquitous Comput-
ing Applications, Proceedings of the 5th ACM/IFIP/USENIX Interna-
tional Conference on Middleware, Toronto, Canada, Springer-Verlag,
397–416.

RASHID, O., W. BAMFORD, P. COULTON, AND R. EDWARDS [2006],
PAC-LAN: Mixed-reality Gaming with RFID-enabled Mobile Phones,
Computer Entertainment 4, 4–21.

RDF [2008], Resource Description Framework (RDF),
http://www.w3.org/RDF/.

REEVES, B., AND C. NASS [1996], The Media Equation: How People Treat
Computers, Television, and New Media Like Real People and Places,
Cambridge University Press.

REPENNING, A., AND A. IOANNIDOU [2006], Mobility Agents: Guiding
and Tracking Public Transportation Users, Proceedings of the ACM
Working Conference on Advanced Visual Interfaces, Venezia, Italy,
127–134.

REPENNING, A., AND T. SUMNER [1994], Programming as Problem Solv-
ing: A Participatory Theater Approach, Proceedings of the ACM Work-
shop on Advanced Visual Interfaces, Bari, Italy, 182–191.

RESNICK, M., B. MYERS, K. NAKAKOJI, AND B. SHNEIDERMAN [2005],
Design Principles for Tools to Support Creative Thinking, Workshop on
Creativity Support Tools, http://www.cs.umd.edu/hcil/CST/index.html.

RIFKIN, J. [2001], The Age of Access: The New Culture of Hypercapitalism,
Where all of Life is a Paid-For Experience, J.P. Tarcher.

RIPER, T. VAN [2007], World’s 10 Largest Shopping Malls, Forbes Maga-
zine, January 9.

RIVKIN, J., AND M. RYAN [1998], Literary Theory: An Anthology, Black-
well Publishers.

RODDEN, T., A. CRABTREE, AND T. HEMMINGS [2004], Between the Daz-
zle of a New Building and its Eventual Corpse: Assembling the Ubiq-
uitous Home, Proceedings of the 5th ACM Conference on Designing
Interactive Systems, Cambridge, USA, 71–80.

ROMERO, L., AND N. CORREIA [2003], HyperReal: A Hypermedia Model
for Mixed Reality, Proceedings of the 14th ACM Conference on Hyper-
text and Hypermedia, Nottingham, UK, 2–9.

SANDOR, C., B. BELL, AND A. OLWAL [2004], Visual End User Config-
uration of Hybrid User Interfaces, Proceedings of the ACM SIGMM

186 Bibliography

Workshop on Effective telepresence, New York, NY, USA, 67–68.
SAWYER, K. [2001], The Improvisational Performance of Everyday Life,

Journal of Mundane Behavior 2, 149–163.
SCHECHNER, R. [2002], Performance Studies: An Introduction, Routledge:

New York.
SCHULZE, G. [1992], Die Erlebnisgesellschaft: Kultursoziologie der Gegen-

wart, Campus.
SHERRY, J. [1998], Servicescapes: The Concept of Place in Contemporary

Markets, Ntc Business Books.
SHIREHJINI, A., AND F. KLAR [2005], 3DSim: Rapid Prototyping Ambi-

ent Intelligence, Proceedings of the 2005 Joint Conference on Smart
Objects and Ambient Intelligence, New York, NY, USA, 303–307.

SINCLAIR, P., K. MARTINEZ, D. MILLARD, AND M. WEAL [2002], Links
in the Palm of your Hand: Tangible Hypermedia using Augmented Re-
ality, Proceedings of the 13th ACM Conference on Hypertext and Hy-
permedia, Maryland, USA, 127 – 136.

SMARTEYE [2008], SmartEye Gaze Tracking Technology,
http://www.smarteye.se.

SMIL [2008], Synchronized Multimedia Integration Language (SMIL),
http://www.w3.org/AudioVideo/.

SMITH, M., D. DAVENPORT, H. HWA, AND T. COMBS-TURNER [2004],
Object Auras: A Mobile Retail and Product Annotation System,
Proceedings of the 5th ACM Conference on Electronic Commerce,
240–241.

SOHN, T., AND A. DEY [2003], iCAP: An Informal Tool for Interactive
Prototyping of Context-aware Applications, Extended Abstracts ACM
Conference on Human Factors in Computing Systems, Ft. Lauderdale,
USA, 974–975.

SOMMERER, C., AND L. MIGNONNEAU [2001], The Living Room, Living
in the Future symposium, Malmo,
http://www.interface.ufg.ac.at/christa-laurent/WORKS/index.html.

SPARACINO, F. [2003], Sto(ry)chastics: A Bayesian Network Architec-
ture for User Modeling and Computational Storytelling for Interactive
Spaces, Proceedings of the 5th IEEE Conference on Ubiquitous Com-
puting, New York, NY, USA, 54–72.

STOTTS, P., AND R. FURUTA [1989], Petri-net-based Hypertext: Document
Structure with Browsing Semantics, ACM Transactions on Information
Systems 7, 3–29.

STROSS, R. [2007], Apple’s Lesson for Sony’s Stores: Just Connect,
http://www.nytimes.com/2007/05/27/business/yourmoney/27digi.html.

Bibliography 187

STUART, F., AND S. TAX [2004], Toward an integrative approach to design-
ing service experiences: Lessons learned from the theatre, Journal of
Operation Management 22, 609–627.

SZILAS, N. [2003], IDtension: A Narrative Engine for Interactive Drama,
Proceedings of the 1st International Conference on Technologies for In-
teractive Digital Storytelling and Entertainment, Darmstadt, Germany,
Frauenhofer IRB Verlag, 187–203.

SZULBORSKI, D. [2005], This Is Not A Game: A Guide to Alternate Reality
Gaming, Lulu.

TANG, A., M. FINKE, AND M. BLACKSTOCK [2008], Designing for By-
standers: Reflections on Building a Public Digital Forum, Proceeding
of the 26th ACM Conference on Human Factors in Computing Systems,
Florence, Italy, 879–882.

TEKSCAN [2008], Tekscan Pressure Sensor Technology,
http://www.tekscan.com.

THOMAS, B., B. CLOSE, J. DONOGHUE, J. SQUIRES, AND P. DE BONDI

[2002], First Person Indoor/Outdoor Augmented Reality Application:
ARQuake, Personal Ubiquitous Computing 6, 75–86.

THOMAS, B., W. PIEKARSKI, AND B. GUNTHER [1999], Using Aug-
mented Reality to Visualise Architecture Designs in an Outdoor En-
vironment, Design Computing on the Net.

TOLER, L. [2007], Ralph Lauren debuts ’window shopping’ touch
screen, http://www.usatoday.com/tech/news/techinnovations/2007-06-
20-ralph-lauren-window-shopping N.htm.

TRUONG, K., E. HUANG, AND G. ABOWD [2004], CAMP: A Magnetic Po-
etry Interface for End-User Programming of Capture Applications for
the Home, Proceedings of the 6th IEEE Conference on Ubiquitous
Computing, 143–160.

TSICHRITZIS, D., AND A. KLUG [1978], The ANSI/X3/SPARC Framework
Report of the Study Group on Database Managmeent Systems, Infor-
mation Systems 2, 173–191.

TURNER, V. [1975], Dramas, Fields, and Metaphors: Symbolic Action in
Human Society, Cornell University Press.

TYCHSEN, A., M. HITCHENS, T. BROLUND, AND M. KAVAKLI [2005],
The Game Master, Proceedings of the Second Australasian Confer-
ence on Interactive Entertainment, Sydney, Australia, Creativity &
Cognition Studios Press, 215–222.

UBIQ’WINDOW [2008], Ubiq’window Optical Touch Screen Technology.
UBISENSE [2008], Ubisense Real-time UWB Lcation Technology,

http://www.ubisense.net.

188 Bibliography

VIDEOMINING [2008], Video Mining, http://www.videomining.com.
VOCATION VACATIONS [2008], Test-drive Your Dream Job,

http://vocationvacations.com/.
VOGEL, D., AND R. BALAKRISHNAN [2004], Interactive Public Ambient

Displays: Transitioning from Implicit to Explicit, Public to Personal,
Interaction with Multiple Users, Proceedings of the 17th ACM Sym-
posium on User Interface Software and Technology, Santa Fe, USA,
137–146.

W3C [2008], Date and Time Formats,
http://www.w3.org/TR/NOTE-datetime.

WAGNER, D., T. PINTARIC, F. LEDERMANN, AND D. SCHMALSTIEG

[2005], Towards Massively Multi-user Augmented Reality on Hand-
held Devices, Proceedings of the Third International Conference on
Pervasive Computing, Lecture Notes in Computer Science, Springer,
208–219.

WAKKARY, R., AND M. HATALA [2006], Ec(h)o: Situated Play in a Tangible
and Audio Museum Guide, Proceedings of the 6th ACM Conference on
Designing Interactive systems, University Park, USA, 281–290.

WAKKARY, R., M. HATALA, R. LOVELL, AND M. DROUMEVA [2005], An
Ambient Intelligence Platform for Physical Play, Proceedings of the
13th ACM International Conference on Multimedia, Singapore, 764–
773.

WEAL, M., AND E. HORNECKER [2006], Requirements for in-situ author-
ing of location based experiences, Proceedings of the 8th ACM Con-
ference on Human-Computer Interaction with Mobile Devices and Ser-
vices, New York, NY, USA, 121–128.

WEAL, M., D. MICHAELIDES, M. THOMPSON, AND D. DEROURE

[2003], The Ambient Wood Journals: Replaying the Experience, Pro-
ceedings of the 14th ACM Conference on Hypertext and Hypermedia,
New York, NY, USA, 20–27.

WEISER, M. [1991], The Computer of the 21st Century, Scientific Ameri-
can 265, 94–104.

XPATH [2008], XML Path Language (XPath), http://www.w3.org/TR/xpath.
XQUERY [2008], XQuery Language, http://www.w3.org/TR/xquery/.
XQUERYUF [2008], XQuery Update Facility,

http://www.w3.org/TR/xquery-update-10/.
XUPDATE [2008], XUpdate XML Update Language,

http://xmldb-org.sourceforge.net/xupdate/.
YAHOO [2008], Yahoo Pipes, website, http://pipes.yahoo.com/pipes/.
ZUBOFF, S., AND J. MAXIM [2002], The Supporty Economy, Viking Books.

End-user Programming of Ambient Narratives
for Smart Retail Environments

Ambient Intelligence is a vision on the future of the consumer electronics,
telecommunications and computer industry that refers to electronic environ-
ments that respond to the presence and activity of people and objects. The
goal of these intelligent environments is to support the performance of our
everyday activities using technology and media in way that puts users in con-
trol. Many research prototypes and demonstrations of ambient intelligence
systems and applications have been developed since the introduction of this
vision, but many of these examples focus on a relatively small application do-
main and set of functionality. The downside of this reductionist approach is
that it surpasses the open-ended dynamic nature and complexity that is inher-
ent to social environments.

This thesis aims to find a generic interaction concept to capture the way
we form experiences in our everyday life and integrates technology and media
into that process. It proposes the design of an end-user programming envi-
ronment that supports retail designers without special programming skills to
create, simulate and deploy smart retail environments within this interaction
concept.

To derive such a generic interaction concept it is necessary to look at the
social, cultural and economical factors that shape the ambient intelligence
landscape to better understand how ambient intelligence helps people in per-
forming their everyday life activities and rituals. This analysis shows that
notions like play and performance are not just seen on stage in the theatre:
Everywhere around us people perform culturally defined social scripts, e.g. in
court, in a restaurant or on the street. Social interaction itself in fact can be
seen as an improvised performance that takes shape through the interaction
of people with their surroundings. This implies technology can be applied
to detect these social scripts and in turn affect the environment to improve
the performance. This can be found back in shopping malls and shops for
example: The shop employees perform a service for the customer in which
the shop itself is seen as the stage and the increasingly interactive, dynamic
lighting, audio, video the special effects to enhance the shopping experience

189

190 Summary

for customers. In this experience economy, next to the multi-sensory trend
also a development towards co-creation environments can be seen in which
the consumer becomes an active producer in the construction of the experi-
ence that is offered to him. By looking at such co-creation environment from
a literary, semiotic perspective they can be considered as interactive narra-
tives consisting of interrelated social scripts with associated device actions.
Through interaction with this possibly dynamically changing ambient narra-
tive, i.e. by performing social scripts, players or readers construct their own
story or ambient intelligence experience.

To apply this ambient narrative concept in practice in the domain of retail,
user research was conducted through interviews and workshops with profes-
sional users, i.e. retailers, designers and consultants to discover the types of
interactive multi-sensory retail experiences these people would want to see
and the requirements placed by this group on an end-user programmable am-
bient narrative system. From this research we learned that designers had a
preference for a 3D simulation on a PC in their office to design ambient nar-
ratives, while retailers preferred a PDA version to adjust the retail experience
on location. Furthermore, a list of thirty requirements was derived that can be
grouped into four categories: ambient narrative concept implementation, run-
time system performance, functionality end-user programming environment
and system extensibility.

On the basis of these findings, a formal model was defined to describe
the problem of reconstruction ambient intelligence from the (dynamically
changing) modular fragments of which a (dynamic) ambient narrative con-
sists. Each fragment consists of a description of the social script and the
actions on devices that are coupled to this script. The author of the ambi-
ent narrative can specify which fragments may be activated when by setting
event triggers in the action section of another fragment. This model can be
represented in a hypertext model in which every fragment is a node and each
event trigger a link that connects nodes. An ambient narrative engine con-
tinuously sequences these fragments based on contextual information, session
state and user feedback into a coherent story that is rendered by the devices
that surround people. Next to the design and implementation of the ambi-
ent narrative engine, the functional user requirements were used to compose
a system architecture for an intelligent shop window that supports the entire
lifecycle of ambient narratives, from the initial design in a 3D simulation until
the modification of fragments in-situ with the PDA.

The intelligent shop window prototype with authoring environment was
realized and evaluated in ShopLab at the High Tech Campus in Eindhoven on
three main criteria: usability, run-time performance and extensibility. To test

Summary 191

the usability a user study was conducted in which the participants were asked
to perform four different programming tasks with this prototype tool and fill in
a questionnaire afterwards with both questions on the intuitiveness, expressive
power and efficiency of both authoring tools. From the results of this study
we conclude the target user group is able to design intelligent shop window
ambient narratives with this prototype system. An observation-in-use experi-
ment revealed the response time of the system was satisfactory in the majority
of cases but in some special cases could lead to long response times as a result
of the current implementation of the ambient narrative engine. In terms of
system architecture and extensibility towards other applications and domains,
the strongest restrictions were placed by the assumed fixed sensor infrastruc-
ture and partial implementation of the formal ambient narrative model in the
prototype.

Curriculum Vitae

Mark van Doorn was born in Veghel, the Netherlands, on November 23, 1975.
After graduating from Gymnasium Bernode, Heeswijk-Dinther in 1994 he
moved to the University of Twente, Enschede to study Computer Science. In
the winter of 1997/1998 he did a five-month internship at British Telecom
Laboratories, Ipswich, United Kingdom. He wrote his Masters Thesis “The-
sauri and the Mirror Retrieval Model” and graduated in 1999 at the University
of Twente. In 1999 he became a permanent staff member of the User Ex-
periences department at Philips Research Laboratories Eindhoven, where he
did his PhD research. Currently he is a research scientist and project leader
working on authoring immersive interactive environments. His research inter-
ests include end-user programming, interactive storytelling, mixed reality and
user-driven design. He has filed over 20 patent applications and his work has
been published and presented at several international conferences.

	Contents
	Preface and Acknowledgements
	1. Introduction
	2. Ambient Narrative Concept
	3. Eliciting Functional Retail Requirements
	4. Modelling Smart Environments
	5. Ambient Narrative Engine
	6. An End-user Programmable Shop Window System
	7. Evaluation
	8. Conclusions and Future Work
	References
	Bibliography
	Summary
	Curriculum Vitae

